【題目】一個口袋有個黑球和若干個白球,在不允許將球倒出來的前提下,小明為估計其中的白球數(shù),采用了如下的方法:從口袋中隨機摸出一球,記下顏色,然后把它放回口袋中,搖勻后再隨機摸出一球,記下顏色,再放回口袋中,…,不斷重復上述過程,小明共摸了次,其中次摸到黑球.根據(jù)上述數(shù)據(jù),小明正估計口袋中的白球的個數(shù)是________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分線BD交AC于點D,點M、N分別是BD和BC上的動點,則CM+MN的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長為2,寬為的矩形紙片(),剪去一個邊長等于矩形寬度的正方形(稱為第一次操作);
(1)第一次操作后剩下的矩形長為,寬為 ;
(2)再把第一次操作后剩下的矩形剪去一個邊長等于此時矩形寬度的正方形(稱為第二次操作);如此反復操作下去.
①求第二次操作后剩下的矩形的面積;
②若在第3次操作后,剩下的圖形恰好是正方形,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,已知∠MAN=120°,AC平分∠MAN,∠ABC=∠ADC=90°,則能得到如下兩個結(jié)論:①DC=BC;②AD+AB=AC. 請你證明結(jié)論②.
(2)如圖,把(1)中的條件“∠ABC=∠ADC=90°”改為∠ABC+∠ADC=180°,其他條件不變,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(3)如圖3,如果D在AM的反向延長線上,把(1)中的條件“∠ABC=∠ADC=90°”改為∠ABC=∠ADC,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請直接回答;若不成立,你又能得出什么結(jié)論,直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有A、B兩個餐廳,甲、乙兩名學生各自隨機選擇其中一個餐廳用餐,請用列表或畫樹狀圖的方法解答:
(1)甲、乙兩名學生在同一餐廳用餐的概率;
(2)甲、乙兩名學生至少有一人在B餐廳的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在不透明的口袋中,有四只形狀、大小、質(zhì)地完全相同的小球,四只小球上分別標有數(shù)字,,,、小明先從盒子里隨機取出一只小球(不放回),記下數(shù)字作為平面直角坐標系內(nèi)點的橫坐標;再由小華隨機取出一只小球,記下數(shù)字作為平面直角坐標系內(nèi)點的縱坐標.
用列表法或畫樹狀圖,表示所有這些點的坐標;
小剛為小明、小華兩人設計了一個游戲:當上述中的點在正比例函數(shù)圖象上方時小明獲勝,否則小華獲勝、你認為這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OAPB、ADFE的頂點A、D. B在坐標軸上,點B在AP上,點P、F在函數(shù)上,已知正方形OAPB的面積是9.
(1)求k的值和直線OP的解析式;
(2)求正方形ADFE的邊長
(3)函數(shù)在第三象限的圖像上是否存在一點Q,使得△ABQ的面積為10.5?若存在,求出Q點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】仔細閱讀下面例題,解答問題
例題:已知二次三項式x2﹣4x+m有一個因式是(x+3),求另一個因式以及m的值.
解:設另一個因式為(x+n),得x2﹣4x+m=(x+3)(x+n),
則x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21.
∴另一個因式為(x﹣7),m的值為﹣21.
問題:
(1)若二次三項式x2﹣5x+6可分解為(x﹣2)(x+a),則a= ;
(2)若二次三項式2x2+bx﹣5可分解為(2x﹣1)(x+5),則b= ;
(3)仿照以上方法解答下面問題:若二次三項式2x2+3x﹣k有一個因式是(2x﹣5),求另一個因式以及k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,(1,5)、(1,0)、(4,3).
(1)在圖中作出△關(guān)于軸的對稱圖形△;
(2)寫出點、、的坐標;
(3)在軸上畫出點,使最小;
(4)求六邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com