精英家教網 > 初中數學 > 題目詳情
已知:如圖,在平面直角坐標系內,直線y=x上有一點A,AD⊥x軸于D,且AD=3,C是x軸上的一點,AC⊥AO,長度等于OD的線段EF在x軸上沿OC方向以1/s的速度向點C運動(運動前EF和OD重合,當F點與C重合時停止運動,包括起點、終點),過E,F分別作OC的垂線交直角邊于點P、點Q,連接線段PD,QD,PQ,PQ交線段AD于點M,若設EF運動的時間為t(s).
(1)寫出A點坐標______.PE=______(用含t的代數式表示線段),其中自變量t的取值范圍為______;
(2)是否存在t的值,使得線段PD⊥QD?若存在,請求出相應的t的值,若不存在,請說明理由;
(3)①當t=秒時,線段AM=______;
②求線段AM關于自變量t的函數解析式,并求出AM的最大值.

【答案】分析:(1)根據直線方程和點的縱坐標可以求出橫坐標,進而求出點的坐標;找到終點位置,可以知道t的極限值.
(2)把結論當做已知條件,根據勾股定理或者三角形相似列出方程式,找到相應的關系式,驗證是否在定義域內即可.
(3)可以有多種做法,例如S△APQ面積的多種求法、△PMH∽△PTQ等都可以列出方程式,根據定義域可以知道最大值.
解答:解:(1)∵AD⊥x軸于D,且AD=3點A過直線y=x
∴代入函數式解得A點坐標為(4,3)
解法①由題意得P點橫坐標為t,過直線y=x,所以縱為坐標,即PE=;
解法②∵AP⊥AQ,AM⊥EF
易證△AOD∽△ADC∽△AOC∽△OPE∽△CQF,且三邊之比都為3:4:5,
求得PE=,DC=
∴t的取值范圍為0≤t≤;

(2)不存在t的值使PD⊥QD,理由如下:
方法一(相似)
∵OE=DF=t,∴FC=-t
∴QF=
若PD⊥QD,易證△PED∽△DQF
=
=
4-t=-t
4=
這是不可能的,
∴不存在t的值使PD⊥QD
方法二(勾股定理的逆定理)
∵AP2+AQ2=(5-2+(2=25-+2+2(2分)
PD2+QD2=(PE2+DE2)+(DF2+FQ2)=(2+(4-t)2+t2+(3-2(1分)
∴AP2+AQ2≠PD2+QD2
∴PD⊥QD不可能(2分)
∴不存在t的值使PD⊥QD.

(3)①解法如下,只要把當t=秒代入②中表達式
②方法一(面積法):
∵AP⊥AQ,AM⊥EF
∴S△APQ=AP×AQ=AM×ED+AM×DF=AM×EF
∴AM==
==-2
=-(t-2)2+
∴當t=2秒時,AM最大值為
方法二(相似)
過P作PH⊥QF于T,交AD于H.
QT=3--=3-
∵△PMH∽△PTQ
=
=
∴MH=-2-+3
∴AM=AD-HD-MH=-2+
∴當t=2秒時,AM最大值為

方法三(函數法)
設直線PQ解析式為y=kx+b.
∵P(t,),Q(t+4,3-
解得
∴y=()x+
∵Mx=4
∴My=()×4+=3-=MD
∴AM=AD-MD
=3-(3-
=-2+
∴當t=2秒時,AM最大值為
點評:本題是函數與各種圖形相結合的問題,在圖形中滲透運動的觀點是中考中經常出現的問題,在平常的練習中多加注意.每道題都有不同的做法,根據不同的知識點可以有很多種思路,嘗試著多種方法做題可以很好的鞏固所學知識.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內的點A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應的一次函數的解析式以及它與x軸的交點E的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內.已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內?
(3)當豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個時,乒乓球可以落入桶內?(直接寫出滿足條件的一個答案)

查看答案和解析>>

科目:初中數學 來源: 題型:

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:2012屆重慶萬州區(qū)巖口復興學校九年級下第一次月考數學試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運動 ,交OA于點D,交OC于點M,交BC于點E. 當點P到達點B時,直線也隨即停止運動.

(1)求出點C的坐標;
(2)在這一運動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關于t的函數關系式及t的
范圍;并求出當四邊形OPEM的面積y的最大值?
(3)在整個運動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數學 來源:2013年浙江省湖州市中考數學模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內.已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內?
(3)當豎直擺放圓柱形桶______個時,乒乓球可以落入桶內?(直接寫出滿足條件的一個答案)

查看答案和解析>>

同步練習冊答案