一塊含30°角的直角三角板與一塊含45°角的直角三角板按如圖的方式拼放在一起,其中BC=DC=5cm,等腰直角邊ED與斜邊AB相交于G,則EG的長(zhǎng)是________cm.


分析:根據(jù)兩個(gè)直角三角形的性質(zhì)得到GD∥BC,然后利用平行線(xiàn)分線(xiàn)段成比例定理得到=,進(jìn)而求得線(xiàn)段GD的長(zhǎng),然后再利用等腰直角三角形的性質(zhì)得到ED的長(zhǎng),然后求得線(xiàn)段EG的長(zhǎng)即可.
解答:∵∠EDC=∠DCB=90°,
∴ED∥BC,
=E
∵在直角三角形ABC中,BC=CD=5,∠A=30°,
∴AC=BC=5
∴AD=AC-CD=5-5

解得:GD=5-
∵∠DEC=∠DCE=45°,
∴ED=DC=5
∴EG=ED-GD=5-(5-)=
故答案為:
點(diǎn)評(píng):本題考查了相似三角形的判定及性質(zhì),解題的關(guān)鍵是利用題目中已有的直角三角形得到相似三角形,并利用相似三角形的性質(zhì)進(jìn)行有關(guān)的計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、已知,△ABC是等邊三角形,將一塊含30°角的直角三角板DEF如圖放置,讓三角板在BC所在的直線(xiàn)l上向右平移.當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)A恰好落在三角板的斜邊DF上.
問(wèn):在三角板平移過(guò)程中,圖中是否存在與線(xiàn)段EB始終相等的線(xiàn)段(假定AB、AC與三角板斜邊的交點(diǎn)為G、H)?如果存在,請(qǐng)指出這條線(xiàn)段,并證明;如果不存在,請(qǐng)說(shuō)明理由.
(說(shuō)明:結(jié)論中不得含有圖中未標(biāo)識(shí)的字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•荊州)已知:直線(xiàn)l1∥l2,一塊含30°角的直角三角板如圖所示放置,∠1=25°,則∠2等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•裕華區(qū)二模)已知,如圖△ABC是等邊三角形,將一塊含30°角的直角三角板DEF如圖放置,讓△ABC在BC所在的直線(xiàn)l上向左平移.當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),點(diǎn)A恰好落在三角板的斜邊DF上的M點(diǎn),點(diǎn)C在N點(diǎn)位置上(假定AB、AC與三角板斜邊的交點(diǎn)為G、H)
問(wèn):(1)在△ABC平移過(guò)程中,通過(guò)測(cè)量CH、CF的長(zhǎng)度,猜想CH、CF滿(mǎn)足的數(shù)量關(guān)系;
(2)在△ABC平移過(guò)程中,通過(guò)測(cè)量BE、AH的長(zhǎng)度,猜想BE.AH滿(mǎn)足的數(shù)量關(guān)系;
(3)證明(2)中你的猜想.(證明不得含有圖中未標(biāo)示的字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:直線(xiàn)l1∥l2,將一塊含30°角的直角三角板如圖所示放置,若∠1=25°,則∠2=
35
35
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,有一塊含30°角的直角三角板(∠A=30°,∠C=90°)的一個(gè)頂點(diǎn)放在直尺的一邊上,若∠1=20°.那么∠2的度數(shù)是
40°
40°

查看答案和解析>>

同步練習(xí)冊(cè)答案