如圖,在⊙O中,半徑OC與弦AB垂直,垂足為E,以O(shè)C為直徑的圓與弦AB的一個交點(diǎn)為F,D是CF延長線與⊙O的交點(diǎn),若OE=4,OF=6,求⊙O的半徑和CD的長。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
菱形ABCD的對角線AC,BD相交于點(diǎn)O,,動點(diǎn)P在線段BD上從點(diǎn)B向點(diǎn)D運(yùn)動,PP′⊥AB于點(diǎn)P′,四邊形PFBG關(guān)于BD對稱。四邊形QEDH與四邊形PFBG關(guān)于AC對稱,設(shè)菱形ABCD被這兩個四邊形蓋住部分的面積為,未蓋住部分的面積為,.
(1)用含x代數(shù)式分別表示;
(2)若,求x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,C為⊙O外點(diǎn),CA與⊙O相切,切點(diǎn)為A,AB為⊙O的直徑,連接CB。若⊙O的半徑為2,∠ABC=60°,則BC= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在 ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線經(jīng)過
A(2,0). 設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求b的值,求出點(diǎn)P、點(diǎn)B的坐標(biāo);
(2)如圖,在直線 y=x上是否存在點(diǎn)D,使四邊形OPBD為平行四邊形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,使△AMP≌△AMB?如果存在,試舉例驗(yàn)證你的猜想;如果不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2014年世界杯足球賽6月12日-7月13日在巴西舉行,某初中學(xué)校為了了解本校2400名學(xué)生對此次世界杯的關(guān)注程度,以便做好引導(dǎo)和教育工作,隨機(jī)抽取了200名學(xué)生進(jìn)行調(diào)查,按年級人數(shù)和關(guān)注程度,分別繪成了條形統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2》.
(1)四個年級被調(diào)查人數(shù)的中位數(shù)是多少?
(2)如果把‘特別關(guān)住“一般關(guān)注“偶爾關(guān)注.都統(tǒng)計成關(guān)注,那么全校關(guān)注本屆世界杯
的學(xué)生大約有多少名寧
(3)在這次調(diào)查中,初四年級共有甲、乙、丙、丁四人..特別關(guān)注,本屆世界杯,現(xiàn)準(zhǔn)備從四人中隨機(jī)抽取兩人進(jìn)行座談,請用列表法或畫樹狀田的方法求出抽取的兩人恰好是甲和乙的概率,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com