【題目】已知△ABC,∠ACB=90°,AC=BC=4.D是AB的中點,P是平面上的一點,且DP=1,連接BP、CP,將點B繞點P順時針旋轉90°得到點B′,連CB′,CB′的最大值是_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1,平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C1繞某一點旋轉可以得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為測量觀光塔高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,請根據(jù)以上觀測數(shù)據(jù)求觀光塔的高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與兩坐標軸分別交于A、B兩點,拋物線 經(jīng)過點A、B,點P為直線AB上的一個動點,過P作y軸的平行線與拋物線交于C點, 拋物線與x軸另一個交點為D.
(1)求圖中拋物線的解析式;
(2)當點P在線段AB上運動時,求線段PC的長度的最大值;
(3)在直線AB上是否存在點P,使得以O、A、P、C為頂點的四邊形是平行四邊形?若存在,請求出此時點P 的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c的圖象經(jīng)過點C(0,﹣2),頂點D的坐標為(1,﹣),與x軸交于A、B兩點.
(1)求拋物線的解析式.
(2)連接AC,E為直線AC上一點,當△AOC∽△AEB時,求點E的坐標和的值.
(3)點C關于x軸的對稱點為H,當FC+BF取最小值時,在拋物線的對稱軸上是否存在點Q,使△QHF是直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0)、B(3,0),與y軸交于點C(0,﹣3).
(1)求拋物線的解析式;
(2)拋物線上是否存在一點P,使得∠APB=∠ACO成立?若存在,求出點P的坐標:若不存在,請說明理由.
(3)我們規(guī)定:對于直線l1:y=k1x+b,直線l2:y=k2x+b2,若直線k1k2=﹣1,則直線l1⊥l2;反過來也成立.請根據(jù)這個規(guī)定解決下列可題:
如圖2,將該拋物線向上平移過原點與直線y=kx(k>0)另交于C點.點T為該二次函數(shù)圖象上位于直線OC下方的動點,過點T作直線TM⊥OC′,重足為點M,且M在線段OC′上(不與O、C′重合),過點T作直線TN∥y軸交OC'于點N.若在點T運動的過程中,為常數(shù),試確定k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+3在坐標系中的位置如圖所示,它與x軸、y軸的交點分別為A,B,點P是其對稱軸x=1上的動點,根據(jù)圖中提供的信息,給出以下結論:①2a+b=0;②x=3是ax2+bx+3=0的一個根;③△PAB周長的最小值是+3.其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】京劇臉譜是京劇藝術獨特的表現(xiàn)形式.京劇表演中,經(jīng)常用臉譜象征人物的性格,品質,甚至角色和命運.如紅臉代表忠心耿直,黑臉代表強悍勇猛.現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“紅臉”,另外一張卡片的正面圖案為“黑臉”,卡片除正面圖案不同外,其余均相同,將這三張卡片背面向上洗勻,從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.
請用畫樹狀圖或列表的方法,求抽出的兩張卡片上的圖案都是“紅臉”的概率.(圖案為“紅臉”的兩張卡片分別記為A1、A2,圖案為“黑臉”的卡片記為B)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com