【題目】已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見下表:

海拔高度(單位:米)

0

100

200

300

400

平均氣溫(單位:℃)

22

21.5

21

20.5

20


(1)若海拔高度用x(米)表示,平均氣溫用y(℃)表示,試寫出y與x之間的函數(shù)關(guān)系式;
(2)若某種植物適宜生長(zhǎng)在18℃~20℃(包含18℃,也包含20℃)山區(qū),請(qǐng)問該植物適宜種植在海拔為多少米的山區(qū)?

【答案】
(1)解:y=22﹣0.5× =22﹣0.005x
(2)解:當(dāng)y=18時(shí),即 22﹣0.005x=18,解得 x=800;

當(dāng)y=20時(shí),即 22﹣0.005x=20,解得 x=400.

∴若某種植物適宜生長(zhǎng)在18℃~20℃(包含18℃,也包含20℃)山區(qū),那么該植物適宜種植在海拔為400~800米的山區(qū)


【解析】(1)依據(jù)表格可知高度每增加100米,溫度下降0.5℃,據(jù)此可列出函數(shù)關(guān)系式;
(2)分別求得當(dāng)y=18和y=20時(shí)對(duì)應(yīng)的x的值,從而可得到高度x的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點(diǎn)坐標(biāo)為(,m),則不等式組mx﹣2<kx+1<mx的解集為(  )

A. x> B. <x< C. x< D. 0<x<

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)A(0,0)、B(4,0)、C(0,4),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…則第2017個(gè)等邊三角形的邊長(zhǎng)等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知線段 AB 的兩個(gè)端點(diǎn)坐標(biāo)分別為Aa,5),B8,b),且

1)求 a,b 的值;

2)①連OAOB,則SAOB 平方單位;(說明:SAOB 表示三角形 AOB 的面積,下同.)

②點(diǎn)PO點(diǎn)出發(fā)沿 y 軸負(fù)方向運(yùn)動(dòng),速度為每秒1個(gè)單位,連PAOBC,則運(yùn)動(dòng)多少秒時(shí),SABCSPOC ;

3)在(2)的條件下,過P作直線mAB,過B作直線 lx軸,直線m和直線l相交于點(diǎn)Q,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,點(diǎn)E在邊AD上,點(diǎn)F在邊BC上,且AE=CF,作EG∥FH,分別與對(duì)角線BD交于點(diǎn)G、H,連接EH,F(xiàn)G.

(1)求證:△BFH≌△DEG;
(2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一”小長(zhǎng)假期間,某超市為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性購(gòu)物滿500元以上均可獲得兩次摸球的機(jī)會(huì)(摸出小球后放回).超市根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)的代金券.
(1)顧客甲購(gòu)物1000元,則他最少可獲元代金券,最多可獲元代金券.
(2)請(qǐng)用樹形圖或列表方法,求出顧客甲獲得不低于30元(含30元)代金券的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)OACBD的交點(diǎn),過點(diǎn)O的直線與BA的延長(zhǎng)線,DC的延長(zhǎng)線分別交于點(diǎn)E,F.

(1)求證:△AOE≌△COF.

(2)連接ECAF,則EFAC滿足什么數(shù)量關(guān)系時(shí),四邊形AECF是矩形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場(chǎng)經(jīng)營(yíng)的某品牌童裝,4月的銷售額為20000元,為擴(kuò)大銷量,5月份商場(chǎng)對(duì)這種童裝打9折銷售,結(jié)果銷量增加了50件,銷售額增加了7000元.

(1)求該童裝4月份的銷售單價(jià);

(2)若4月份銷售這種童裝獲利8000元,6月全月商場(chǎng)進(jìn)行“六一”兒童節(jié)促銷活動(dòng).童裝在4月售價(jià)的基礎(chǔ)上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤(rùn)比4月的利潤(rùn)至少增長(zhǎng)25%?

查看答案和解析>>

同步練習(xí)冊(cè)答案