分析 (1)由于是兩直角三角形板重疊,根據(jù)∠AOC=∠AOB+∠COD-∠BOD可分別計算出∠AOC、∠BOD的度數(shù);
(2)根據(jù)∠BOD=360°-∠AOC-∠AOB-∠COD計算可得;
(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知兩角互補(bǔ);
(4)分別利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分別求出即可.
解答 解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,
∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-35°=145°,
若∠AOC=135°,
則∠BOD=∠AOB+∠COD-∠AOC=90°+90°-135°=45°;
(2)如圖2,若∠AOC=140°,
則∠BOD=360°-∠AOC-∠AOB-∠COD=40°;
(3)∠AOC與∠BOD互補(bǔ).
∵∠AOD+∠BOD+∠BOD+∠BOC=180°.
∵∠AOD+∠BOD+∠BOC=∠AOC,
∴∠AOC+∠BOD=180°,
即∠AOC與∠BOD互補(bǔ).
(4)OD⊥AB時,∠AOD=30°,
CD⊥OB時,∠AOD=45°,
CD⊥AB時,∠AOD=75°,
OC⊥AB時,∠AOD=60°,
即∠AOD角度所有可能的值為:30°、45°、60°、75°;
故答案為:(1)145°,45°;(2)40°.
點(diǎn)評 本題題主要考查了互補(bǔ)、互余的定義等知識,解決本題的關(guān)鍵是理解重疊的部分實(shí)質(zhì)是兩個角的重疊.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.5cm | B. | 2cm | C. | 4cm | D. | 6cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com