【題目】如圖,在四邊形ABCD中,連接BD,點E,F(xiàn)分別在AB和CD上,連接CE,AF,CE與AF分別交B于點N,M.已知∠AMD=∠BNC.
(1)若∠ECD=60°,求∠AFC的度數(shù);
(2)若∠ECD=∠BAF,試判斷∠ABD與∠BDC之間的數(shù)量關系,并說明理由.
【答案】(1)∠AFC=120°(2)∠ABD=∠BDC
【解析】(1)根據(jù)已知條件得到∠BMF=∠BNC,由平行線的判定定理得到AF∥CE,根據(jù)平行線的性質(zhì)得到∠AFC+∠ECD=180°,即可得到結(jié)論;
(2)由∠AFC+∠ECD=180°,由于∠ECD=∠BAF,等量代換得到∠BAF+∠AFC=180°,推出AB∥CD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.
(1)∵∠AMD=∠BNC,
∵∠AMD=∠BMF,
∴∠BMF=∠BNC,
∴AF∥CE,
∴∠AFC+∠ECD=180°,
∵∠ECD=60°,
∴∠AFC=120°;
(2)∵∠AFC+∠ECD=180°,
∵∠ECD=∠BAF,
∴∠BAF+∠AFC=180°,
∴AB∥CD,
∴∠ABD=∠BDC.
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCO中,O為坐標原點,A在y軸上,C在x軸上,B的坐標為(8,6),P是線段BC上動點,點D是直線y=2x﹣6上第一象限的點,若△APD是等腰Rt△,則點D的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D、E
(1) 求證:CD=BE
(2) 若AD=3.5 cm,DE=2.7 cm,求BE的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市規(guī)劃中某地段地鐵線路要穿越護城河PQ,站點A和站點B在河的兩側(cè),要測算出A、B間的距離.工程人員在點P處測得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達點Q出,測得A位于北偏東49°方向,B位于南偏西41°方向.根據(jù)以上數(shù)據(jù),求A、B間的距離.(參考數(shù)據(jù):cos41°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小亮從家步行到公交車站臺,乘公交車去學校. 圖中的折線表示小亮的離家距離s(km)與所花時間t(min)之間的函數(shù)關系. 下列說法錯誤的是
A. 他離家8km共用了30min B. 公交車的速度是350m/min
C. 他步行的速度是100m/min D. 他等公交車時間為6min
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩名運動員進行射擊選撥賽,每人射擊10次,其中射擊中靶情況如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | 第九次 | 第十次 | |
甲 | 7 | 10 | 8 | 10 | 9 | 9 | 10 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 9 | 9 | 10 | 8 | 10 | 7 | 10 |
(1)選手甲的成績的中位數(shù)是__________分;選手乙的成績的眾數(shù)是__________分;
(2)計算選手甲的平均成績和方差;
(2)已知選手乙的成績的方差是1.4,則成績較穩(wěn)定的是哪位選手?(直按寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果專賣店銷售櫻桃,其進價為每千克元,按每千克元出售,平均每天可售出千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每千克降低元,則平均每天的銷售可增加千克,若該專賣店銷售這種櫻桃要想平均每天獲利元,請回答:
()每千克櫻桃應降價多少元?
()在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, , ,以點為頂點、為腰在第三象限作等腰.
()求點的坐標.
()如圖, 為軸負半軸上一個動點,當點沿軸負半軸向下運動時,以為頂點, 為腰作等腰,過作軸于點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com