分析 (1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;
(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出$\frac{CE}{BD}=\frac{CD}{AB}$,從而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入數(shù)據(jù)即可得到結(jié)果.
解答 (1)證明:連接OD,如圖,
∵AB為⊙0的直徑,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD為△ABC的中位線,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙0的切線;
(2)證明:∵∠B=∠C,∠CED=∠BDA=90°,
∴△DEC∽△ADB,
∴$\frac{CE}{BD}=\frac{CD}{AB}$,
∴BD•CD=AB•CE,
∵BD=CD,
∴BD2=AB•CE,
∵⊙O半徑為3,CE=2,
∴BD=$\sqrt{6×2}$=2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了切線的判定定理:過(guò)半徑的外端點(diǎn)且與半徑垂直的直線為圓的切線.也考查了等腰三角形的性質(zhì)、三角形相似的判定和性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 甲組加工零件數(shù)量y與時(shí)間x的關(guān)系式為y甲=40x | |
B. | 乙組加工零件總量m=280 | |
C. | 經(jīng)過(guò)2$\frac{1}{2}$小時(shí)恰好裝滿(mǎn)第1箱 | |
D. | 經(jīng)過(guò)4$\frac{3}{4}$小時(shí)恰好裝滿(mǎn)第2箱 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com