【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于E,交DC的延長(zhǎng)線于F,BG⊥AE于G,BG=,則△EFC的面積是( 。

A. B. C. D.

【答案】C

【解析】

判斷出ADF是等腰三角形,ABE是等腰三角形,在RtBGE中求出GE,繼而得到AE,求出ABE的周長(zhǎng),根據(jù)相似三角形的周長(zhǎng)之比等于相似比,可得出EFC的周長(zhǎng).

ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點(diǎn)E,
∴∠BAF=∠DAF,
∵AB∥DF,AD∥BC,
∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,
∴AB=BE=6,AD=DF=9,
∴△ADF是等腰三角形,ABE是等腰三角形,
∵AD∥BC,
∴△EFC是等腰三角形,且FC=CE,
∴EC=FC=9-6=3,
ABG中,BG⊥AE,AB=6,BG=4
∴AG==2,
∴AE=2AG=4,
∴△ABE的面積等于8,
∵△CEF∽△BEA,相似比為1:2,面積比為1:4,
∴△CEF的面積為2

所以答案選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m。設(shè)AD的長(zhǎng)為xm,DC的長(zhǎng)為ym。

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過(guò)26m,材料AD和DC的長(zhǎng)都是米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)P是直線BC下方拋物線上的任意一點(diǎn).

(1)求這個(gè)二次函數(shù)y=x2+bx+c的解析式.

(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形POP′C,如果四邊形POP′C為菱形,求點(diǎn)P的坐標(biāo).

(3)如果點(diǎn)P在運(yùn)動(dòng)過(guò)程中,能使得以P、C、B為頂點(diǎn)的三角形與△AOC相似,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:如圖①,在ABCD中,EBC的中點(diǎn),AEBD相交于點(diǎn)M.求證:

應(yīng)用:如圖②,在四邊形ABCD中,ABCD,AB=2CD,點(diǎn)E、F分別為ABBC的中點(diǎn),EFBD相交于點(diǎn)M,連結(jié)AC.若ME=3,則AC的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△OAB中,OA=4,AB=5,點(diǎn)C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)圓心P,則k=________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量家門(mén)前小河的寬.測(cè)量時(shí),他們選擇了河對(duì)岸邊的一棵大樹(shù),將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長(zhǎng)線上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線.

已知:CBAD,EDAD,測(cè)得BC=1mDE=1.5m,BD=8.5m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過(guò)點(diǎn)(﹣1,0)和(m,0),且1<m<2,當(dāng)x<﹣1時(shí),y隨著x的增大而減小.下列結(jié)論:

①abc>0;

②a+b>0;

③若點(diǎn)A(﹣3,y1),點(diǎn)B(3,y2)都在拋物線上,則y1<y2

④a(m﹣1)+b=0;

⑤若c≤﹣1,則b2﹣4ac≤4a.

其中結(jié)論錯(cuò)誤的是 .(只填寫(xiě)序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,分別是邊的中點(diǎn),于點(diǎn),則

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:反比例函數(shù)和一次函數(shù)y=2x-1,其中一次函數(shù)的圖像經(jīng)過(guò)點(diǎn)A(k,5).

(1)試求反比例函數(shù)的解析式;

(2)若點(diǎn)B在第四象限內(nèi),且同時(shí)在上述兩函數(shù)的圖像上,求B點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案