【題目】如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P, Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).以AP為一邊向上作正方形APDE,過(guò)點(diǎn)Q作QF∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為,正方形APDE和梯形BCFQ重合部分的面積為cm.
(1)當(dāng)=_____s時(shí),點(diǎn)P與點(diǎn)Q重合;
(2)當(dāng)為多少時(shí),點(diǎn)D在QF上;
(3)是否存在某一時(shí)刻,使得正方形APDE的面積被直線QF平分?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)1;(2);(3).
【解析】
(1)當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),此時(shí)AP=BQ=t,且AP+BQ=AB=2,由此列一元一次方程求出t的值;
(2)當(dāng)點(diǎn)D在QF上時(shí),如圖1所示,此時(shí)AP=BQ=t.由相似三角形比例線段關(guān)系可得PQ=t,從而由關(guān)系式AP+PQ+BQ=AB=2,列一元一次方程求出t的值;
(3)當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間運(yùn)動(dòng)(不包括Q,B兩點(diǎn)),1<t≤時(shí),如答圖3所示,此時(shí)重合部分為梯形PDGQ.先計(jì)算梯形各邊長(zhǎng),然后利用梯形面積公式求出S;由題意知,當(dāng)1<t≤時(shí),正方形APDE的面積被直線QF平分,列出方程,求出時(shí)間t.
解:(1)當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AP=BQ=t,且AP+BQ=AB=2,
∴t+t=2,解得t=1s,
故答案:1.
(2)當(dāng)點(diǎn)D在QF上時(shí),如圖1所示,此時(shí)AP=BQ=t.
∵QF∥BC,APDE為正方形,
∴△PQD∽△ABC,
∴DP:PQ=AC:AB=2,
則PQ=DP=AP=t.
由AP+PQ+BQ=AB=2,得t+t+t=2,
解得:t=.
故答案:.
(3)當(dāng)P、Q重合時(shí),由(1)知,此時(shí)t=1;當(dāng)D點(diǎn)在BC上時(shí),如圖2所示,此時(shí)AP=BQ=t,BP=t,求得t=s,因此當(dāng)P點(diǎn)在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn)),且1<t≤時(shí),如圖3所示,此時(shí)重合部分為梯形PDGQ.此時(shí)AP=BQ=t,
∴AQ=2t,PQ=APAQ=2t2;
易知△ABC∽△AQF,
可得AF=2AQ,EF=2EG.
∴EF=AFAE=2(2t)t=43t,EG=EF=2t,
∴DG=DEEG=t(2t)=t2.
S=S梯形PDGQ=(PQ+DG)PD,
=[(2t2)+(t2)]t,
=;
由題意知,當(dāng)1<t≤時(shí),正方形APDE的面積被直線QF平分,
∴
解得:
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是BC的中點(diǎn),以點(diǎn)D為頂點(diǎn)作正方形DFGE,使點(diǎn)A、C分別在DE和DF上,連接BE、AF.則線段BE和AF數(shù)量關(guān)系_____.
(2)類比探究:如圖②,保持△ABC固定不動(dòng),將正方形DFGE繞點(diǎn)D旋轉(zhuǎn)α(0°<α≤360°),則(1)中的結(jié)論是否成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)解決問(wèn)題:若BC=DF=2,在(2)的旋轉(zhuǎn)過(guò)程中,連接AE,請(qǐng)直接寫(xiě)出AE的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)B(0,3)和點(diǎn)A(3,0).
(1)求拋物線的函數(shù)表達(dá)式和直線的函數(shù)表達(dá)式;
(2)若點(diǎn)P是拋物線落在第一象限,連接PA,PB,求△PAB的面積S的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△PBC、△QCD是兩個(gè)等邊三角形,PB與DQ交于M,BP與CQ交于E,CP與DQ交于F。
求證:PM=QM。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的對(duì)稱軸是直線x=1,且經(jīng)過(guò)點(diǎn)(﹣1,0),則下列結(jié)論:①abc<0;②2a﹣b=0;③a<﹣ ;④若方程ax2+bx+c﹣2=0的兩個(gè)根為x1和x2,則(x1+1)(x2﹣3)<0,正確的有( 。﹤(gè).
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上.若BC=8cm,AD=6cm,
(1)PN=2PQ,求矩形PQMN的周長(zhǎng)
(2)當(dāng)PN為多少時(shí)矩形PQMN的面積最大,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樓底右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上).已知AB=80m,DE=20m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】西瓜經(jīng)營(yíng)戶以2元/千克的價(jià)格購(gòu)進(jìn)一批小型西瓜,以3元/千克的價(jià)格出售,每天可售出200千克,為了促銷,該經(jīng)營(yíng)戶決定降價(jià)銷售,經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價(jià)0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元.
(1)設(shè)銷售單價(jià)為每千克a元,每天平均獲利為y元,請(qǐng)解答下列問(wèn)題:
①每天平均銷售量可以表示為_____;
②每天平均銷售額可以表示為_____;
③每天平均獲利可以表示為y=______;
(2) 該經(jīng)營(yíng)戶要想每天盈利200元,應(yīng)將每千克小型西瓜的售價(jià)降多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com