【題目】如圖,在中,,,點(diǎn)在邊上,,射線于點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿射線方向運(yùn)動(dòng),過(guò)點(diǎn),交射線于點(diǎn),以、為鄰邊作,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.

1)線段的長(zhǎng)為 (用含的代數(shù)式表示)

2)求點(diǎn)落在上時(shí)的值;

3)設(shè)的重疊部分圖形的面積為(平方單位),當(dāng)時(shí),求之間的函數(shù)關(guān)系式.

4)當(dāng)時(shí),直接寫(xiě)出為等腰三角形時(shí)的值.

【答案】(1)x;(2x=2;(3)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;(3)(4,

【解析】

1)由題意得,,,,且=,根據(jù),求出;(2)通過(guò)即可求出x的值;(3)分三種情況,分別求解即可;(4)分三種情況線段相等分別討論,即時(shí),時(shí)與當(dāng)時(shí)分別求解即可.

解:(1)由題意,得,,.

=,

,

.

2)當(dāng)點(diǎn)落在上時(shí),

.

3)由上圖知當(dāng)時(shí),陰影部分面積為的面積,,即

當(dāng)時(shí),

當(dāng)時(shí),如下圖作 ,

又已知PF∥DE

重合部分面積

故答案為:當(dāng)時(shí),;

當(dāng)時(shí),.

4

①當(dāng)時(shí)

②當(dāng)時(shí)

解得:(舍去)

③當(dāng)時(shí)

解得:(舍去)

x的取值為:,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,已知拋物線 y ax bx c 經(jīng)過(guò) A3,0,B 1,0 ,C 0,3 三點(diǎn),其頂點(diǎn)為D,對(duì)稱(chēng)軸是直線l l x 軸交于點(diǎn) H .

1)求該拋物線的解析式;

2)若點(diǎn) P 是該拋物線對(duì)稱(chēng)軸l 上的一個(gè)動(dòng)點(diǎn),求PBC 周長(zhǎng)的最小值;

3)如圖 2,若 E 是線段 AD 上的一個(gè)動(dòng)點(diǎn)( E A, D 不重合),過(guò) E 點(diǎn)作平行于 y 軸的直線交拋物線于點(diǎn) F ,交 x 軸于點(diǎn)G ,設(shè)點(diǎn) E 的橫坐標(biāo)為m ,四邊形 AODF 的面積為 S 。

①求 S m 的函數(shù)關(guān)系式;

S 是否存在最大值,若存在,求出最大值及此時(shí)點(diǎn) E 的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售一種商品,通過(guò)記錄,發(fā)現(xiàn)該商品從開(kāi)始銷(xiāo)售至銷(xiāo)售的第x天結(jié)束時(shí)(x為整數(shù))的總銷(xiāo)量y(件)滿足二次函數(shù)關(guān)系,銷(xiāo)量情況記錄如下表:

x

0

1

2

3

y

0

58

112

162

(1)求yx之間的函數(shù)關(guān)系式(不需要寫(xiě)自變量的取值范圍);

(2)求:銷(xiāo)售到第幾天結(jié)束時(shí),該商品全部售完?

(3)若第m天的銷(xiāo)量為22件,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年巴西世界杯足球賽前夕,某體育用品店購(gòu)進(jìn)一批單價(jià)為40元的球服,如果按單價(jià)60元銷(xiāo)售,那么一個(gè)月內(nèi)可售出240,根據(jù)銷(xiāo)售經(jīng)驗(yàn),提高銷(xiāo)售單價(jià)會(huì)導(dǎo)致銷(xiāo)售量的減少,即銷(xiāo)售單價(jià)每提高5,銷(xiāo)售量相應(yīng)減少20,設(shè)銷(xiāo)售單價(jià)為x(x60)元,銷(xiāo)售量為y.

(1)求出yx的函數(shù)關(guān)系式;

(2)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),且銷(xiāo)售額為14000?

(3)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),才能在一個(gè)月內(nèi)獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解全校1500名學(xué)生對(duì)學(xué)校設(shè)置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項(xiàng)體育活動(dòng)的喜愛(ài)情況,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,對(duì)他們喜愛(ài)的體育項(xiàng)目(每人只選一項(xiàng))進(jìn)行了問(wèn)卷調(diào)查,將統(tǒng)計(jì)數(shù)據(jù)繪制成如圖兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列各題.

(1)m= %,這次共抽取了 名學(xué)生進(jìn)行調(diào)查;并補(bǔ)全條形圖;

(2)請(qǐng)你估計(jì)該校約有 名學(xué)生喜愛(ài)打籃球;

(3)現(xiàn)學(xué)校準(zhǔn)備從喜歡跳繩活動(dòng)的4人(三男一女)中隨機(jī)選取2人進(jìn)行體能測(cè)試,請(qǐng)利用列表或畫(huà)樹(shù)狀圖的方法,求抽到一男一女學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1,y1),B(x2,y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( 。

A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件25元時(shí),每天可賣(mài)出250件.市場(chǎng)調(diào)查反映:如果調(diào)整價(jià)格,一件商品每漲價(jià)1元,每天要少賣(mài)出10件.

(1)求出每天所得的銷(xiāo)售利潤(rùn)w(元)與每件漲價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)求銷(xiāo)售單價(jià)為多少元時(shí),該商品每天的銷(xiāo)售利潤(rùn)最大;

(3)商場(chǎng)的營(yíng)銷(xiāo)部在調(diào)控價(jià)格方面,提出了A,B兩種營(yíng)銷(xiāo)方案.

方案A:每件商品漲價(jià)不超過(guò)5元;

方案B:每件商品的利潤(rùn)至少為16元.

請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系x0y中,直線y軸交于點(diǎn)A,與x軸交于點(diǎn)B,拋物線過(guò)A、B兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)C.

1)求拋物線的解析式及點(diǎn)C的坐標(biāo);

2)如圖2,作拋物線,使得拋物線恰好關(guān)于原點(diǎn)對(duì)稱(chēng),在第一象限內(nèi)交于點(diǎn)D,連接AD,CD.

①請(qǐng)直接寫(xiě)出拋物線的解析式和點(diǎn)D的坐標(biāo);

②求四邊形AOCD的面積;

3)已知拋物線,的頂點(diǎn)為M,設(shè)P為拋物線對(duì)稱(chēng)軸上一點(diǎn),Q為直線上一點(diǎn),是否存在以點(diǎn)M,QP,B為頂點(diǎn)的四邊形為平行四邊形?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2(k1)xk210

(1) 當(dāng)k取何值方程有兩個(gè)實(shí)數(shù)根

(2) 是否存在k值使方程的兩根為一個(gè)矩形的兩鄰邊長(zhǎng),且矩形的對(duì)角線長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案