【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.(1)求證:PC=PE; (2)求∠CPE的度數(shù);
拓展探究
(3)如圖2,把“正方形ABCD”改為“菱形ABCD”,其他條件不變,當(dāng)∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
【答案】(1)、證明過程見解析;(2)、90°;(2)、AP=CE,證明過程見解析.
【解析】
試題分析:(1)、根據(jù)正方形得出AB=BC,∠ABP=∠CBP=45°,結(jié)合PB=PB得出△ABP ≌△CBP,從而得出結(jié)論;(2)、根據(jù)全等得出∠BAP=∠BCP,∠DAP=∠DCP,根據(jù)PA=PE得出∠DAP=∠E,即∠DCP=∠E,然后根據(jù)180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E得出答案;(3)、首先證明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=CE.
試題解析:(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(對頂角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
(3)、AP=CE
理由是:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS), ∴PA=PC,∠BAP=∠BCP,
∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
∵∠CFP=∠EFD(對頂角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等邊三角形,∴PC=CE,∴AP=CE
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列數(shù)據(jù)中,哪一組能構(gòu)成直角三角形( )
A.1,2,3
B.5,8,5
C.3,4,5
D.6,8,12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多項式2x2y3﹣5xy2﹣3的次數(shù)和項數(shù)分別是( )
A. 5,3 B. 5,2 C. 8,3 D. 3,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c的頂點坐標為(1,﹣3),則拋物線對應(yīng)的函數(shù)解析式為( 。
A.y=x2﹣2x+2
B.y=x2﹣2x﹣2
C.y=﹣x2﹣2x+1
D.y=x2﹣2x+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,適合采用普查方式進行的是 ( )
A. 對泰興市居民日平均用水量的調(diào)查
B. 對浙江衛(wèi)視 “王牌對王牌”欄目收視率的調(diào)查
C. 對泰興市中小學(xué)生玩網(wǎng)游情況的調(diào)查
D. 對洋思中學(xué)教師的身體健康狀況的調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,邊BC的垂直平分線EF分別交AD、BC于點M、E,交BA的延長線于點F,若點A是BF的中點,AB=5,ABCD的周長為34,則FM的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線分別交軸,軸于A,B兩點,點C為OB的中點,點D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點A,B的坐標,并求直線AB與CD交點E的坐標;
(2)動點P從點C出發(fā),沿線段CD以每秒1個單位長度的速度向終點D運動;同時,動點N從點A出發(fā),沿線段AO以每秒1個單位長度的速度向終點O運動,過點P作,垂足為H,連接NP.設(shè)點P的運動時間為t秒.
① 若△NPH的面積為1,求t的值;
② 點Q是點B關(guān)于點A的對稱點,問是否有最小值,如果有,求出相應(yīng)的點P的坐標;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷不正確的是( ).
A.形狀相同的圖形是全等圖形
B.能夠完全重合的兩個三角形全等
C.全等圖形的形狀和大小都相同
D.全等三角形的對應(yīng)角相等
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com