分析 (1)先求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求出拋物線的函數(shù)表達(dá)式;
(2)如答題圖2,設(shè)頂點(diǎn)P在直線AC上并沿AC方向滑動(dòng)距離$\sqrt{2}$時(shí),到達(dá)P′,作P′M∥y軸,PM∥x軸,交于M點(diǎn),根據(jù)直線AC的斜率求得△P′PM是等腰直角三角形,進(jìn)而求得拋物線向上平移1個(gè)單位,向右平移1個(gè)單位,從而求得平移后的解析式,進(jìn)而求得與x軸的交點(diǎn),與直線AC的交點(diǎn),即可證得結(jié)論;
(3)如答圖3所示,作點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)B′,由分析可知,當(dāng)B′、Q、F(AB中點(diǎn))三點(diǎn)共線時(shí),NP+BQ最小,最小值為線段B′F的長(zhǎng)度.
解答 解:(1)∵等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,-1),C的坐標(biāo)為(4,3)
∴點(diǎn)B的坐標(biāo)為(4,-1).
∵拋物線過A(0,-1),B(4,-1)兩點(diǎn),
∴$\left\{\begin{array}{l}{c=-1}\\{\frac{1}{2}×16+4b+c=-1}\end{array}\right.$,
解得:b=2,c=-1,
∴拋物線的函數(shù)表達(dá)式為:y=-$\frac{1}{2}$x2+2x-1.
(2)如答題圖2,設(shè)頂點(diǎn)P在直線AC上并沿AC方向滑動(dòng)距離$\sqrt{2}$時(shí),到達(dá)P′,作P′M∥y軸,PM∥x軸,交于M點(diǎn),
∵點(diǎn)A的坐標(biāo)為(0,-1),點(diǎn)C的坐標(biāo)為(4,3),
∴直線AC的解析式為y=x-1,
∵直線的斜率為1,
∴△P′PM是等腰直角三角形,
∵PP′=$\sqrt{2}$,
∴P′M=PM=1,
∴拋物線向上平移1個(gè)單位,向右平移1個(gè)單位,
∵y=-$\frac{1}{2}$x2+2x-1=-$\frac{1}{2}$(x-2)2+1,
∴平移后的拋物線的解析式為y=-$\frac{1}{2}$(x-3)2+2,
令y=0,則0=-$\frac{1}{2}$(x-3)2+2,
解得x1=1,x2=5,
∴平移后的拋物線與x軸的交點(diǎn)為(1,0),(5,0),
解$\left\{\begin{array}{l}{y=-\frac{1}{2}(x-3)^{2}+2}\\{y=x-1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.或\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$
∴平移后的拋物線與AC的交點(diǎn)為(1,0),
∴平移后的拋物線與直線AC交于x軸上的同一點(diǎn)(1,0).
(3)如答圖3,取點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B′,易得點(diǎn)B′的坐標(biāo)為(0,3),BQ=B′Q,取AB中點(diǎn)F,
連接QF,F(xiàn)N,QB′,易得FN∥PQ,且FN=PQ,
∴四邊形PQFN為平行四邊形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$.
∴當(dāng)B′、Q、F三點(diǎn)共線時(shí),NP+BQ最小,最小值為2$\sqrt{5}$.
點(diǎn)評(píng) 本題考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、一次函數(shù)、幾何變換(平移,對(duì)稱)、等腰直角三角形、平行四邊形、軸對(duì)稱-最短路線問題等知識(shí)點(diǎn),考查了存在型問題和分類討論的數(shù)學(xué)思想,試題難度較大,為二次函數(shù)中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,0) | B. | (-2,0) | C. | (0,2) | D. | (0,-2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com