14.如圖,△ABC中,AB=AC,BD=CE,CD=BF,若∠A=50°,則∠EDF=( 。
A.80°B.65°C.50°D.20°

分析 根據(jù)題意得出∠B=∠C=65°,再證明△BDF≌△CED,從而得出∠BFD=∠CDE,則∠EDF=∠B.

解答 解:∵AB=AC,∠A=50°,
∴∠B=∠C=65°.
在△BDF與△CED中,
$\left\{\begin{array}{l}{BD=CE}\\{∠B=∠C}\\{BF=CD}\end{array}\right.$,
∴△BDF≌△CED,
∴∠BFD=∠CDE,
∵∠BDF+∠BFD=115°,
∴∠BDF+∠CDE=115°,
∴∠EDF=∠B=65°.
故選B.

點(diǎn)評 本題考查了全等三角形的判定和性質(zhì)、等腰三角形的性質(zhì),三角形內(nèi)角和定理,是基礎(chǔ)知識要熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.我國全國第五次人口普查結(jié)果顯示,我國總?cè)丝谝堰_(dá)到13億,用科學(xué)記數(shù)法表示這個數(shù),結(jié)果正確的是(  )
A.0.13×1010B.1.3×109C.13×108D.130×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.如果3x=2y(x、y均不為零),那么x:y的值是(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.邊心距為2的等邊三角形邊長是( 。
A.4B.4$\sqrt{3}$C.2$\sqrt{3}$D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.一個廣告公司制作廣告的收費(fèi)標(biāo)準(zhǔn)是:以面積為單位,在不超過規(guī)定面積a(m2)的范圍內(nèi),每張廣告收費(fèi)100元,若超過am2,則除了要交這100元的基本廣告費(fèi)以外,超過部分還要按每平方米5a元繳費(fèi).如表是該公司對兩家用戶廣告的面積及相應(yīng)收費(fèi)情況的記載:
單位廣告的面積(m2收費(fèi)金額(元)
煙草公司6140
食品公司3100
紅星公司要制作一張大型公益廣告,其材料形狀是矩形ABCD,如果它的四周是空白,并且四周各空0.5m,空白部分不收廣告費(fèi),中間的矩形EFGH部分才是廣告面積,若矩形ABCD的長寬之比為3:2,并且紅星公司只能支出11040元的廣告費(fèi)
(1)求a的值;
(2)求矩形ABCD的長和寬各是多少?(參考數(shù)據(jù):1152=13225,232=529)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.用“●”“■”“”分別表物體,如圖所示,前兩架天平保持平衡,若要使第三架天平也平衡,那么“?”處應(yīng)放“■”的個數(shù)為( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.拋物線y=ax2+4ax-5的對稱軸為( 。
A.x=-2aB.x=4C.x=2aD.x=-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.寫出下列物體類似的幾何圖形:
數(shù)學(xué)課本長方體,筆筒圓柱,金字塔四棱錐,西瓜球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,矩形ABCD中,點(diǎn)B的坐標(biāo)是(4,3),直線l平行于對角線AC,直線l從原點(diǎn)出發(fā),沿x軸的正方向以每秒1個單位長度運(yùn)動,與矩形OABC的兩邊分別交于點(diǎn)M,N,當(dāng)MN=$\frac{1}{2}$AC時,直線l運(yùn)動的時間是( 。
A.2秒B.6秒C.2秒或6秒D.4秒或8秒

查看答案和解析>>

同步練習(xí)冊答案