【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)坐標(biāo)為,并與軸交于點(diǎn),點(diǎn)是對稱軸與軸的交點(diǎn).
(1)求拋物線的解析式;
(2)如圖①所示, 是拋物線上的一個動點(diǎn),且位于第一象限,連結(jié)BP、AP,求的面積的最大值;
(3)如圖②所示,在對稱軸的右側(cè)作交拋物線于點(diǎn),求出點(diǎn)的坐標(biāo);并探究:在軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)當(dāng)時,最大值為;(3)存在,點(diǎn)坐標(biāo)為,理由見解析
【解析】
(1)利用待定系數(shù)法可求出二次函數(shù)的解析式;
(2)求三角形面積的最值,先求出三角形面積的函數(shù)式.從圖形上看S△PAB=S△BPO+S△APO-S△AOB,設(shè)P求出關(guān)于n的函數(shù)式,從而求S△PAB的最大值.
(3) 求點(diǎn)D的坐標(biāo),設(shè)D,過D做DG垂直于AC于G,構(gòu)造直角三角形,利用勾股定理或三角函數(shù)值來求t的值即得D的坐標(biāo);探究在y軸上是否存在點(diǎn),使?根據(jù)以上條件和結(jié)論可知∠CAD=120°,是∠CQD的2倍,聯(lián)想到同弧所對的圓周角和圓心角,所以以A為圓心,AO長為半徑做圓交y軸與點(diǎn)Q,若能求出這樣的點(diǎn),就存在Q點(diǎn).
解:拋物線頂點(diǎn)為
可設(shè)拋物線解析式為
將代入得
拋物線,即
連接,
設(shè)點(diǎn)坐標(biāo)為
當(dāng)時,最大值為
存在,設(shè)點(diǎn)D的坐標(biāo)為
過作對稱軸的垂線,垂足為,
則
在中有
化簡得
(舍去),
∴點(diǎn)D(,-3)
連接,在中
在以為圓心,為半徑的圓與軸的交點(diǎn)上
此時
設(shè)點(diǎn)為(0,m), AQ為的半徑
則AQ=OQ+OA, 6=m+3
即
∴
綜上所述,點(diǎn)坐標(biāo)為
故存在點(diǎn)Q,且這樣的點(diǎn)有兩個點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn),頂點(diǎn)坐標(biāo)與y軸交在,之間(包含端點(diǎn)),則下列結(jié)論:①;②;③對于任意實(shí)數(shù)m,總成立;④關(guān)于x的方程有兩個不等的實(shí)根. 其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動點(diǎn).
(1)求這個二次函數(shù)的解析式;
(2)動點(diǎn)P運(yùn)動到什么位置時,△PBC面積最大,求出此時P點(diǎn)坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x﹣m)2+2m(m≠0)經(jīng)過原點(diǎn),其頂點(diǎn)為P,與x軸的另一交點(diǎn)為A.
(1)P點(diǎn)坐標(biāo)為 ,A點(diǎn)坐標(biāo)為 ;(用含m的代數(shù)式表示)
(2)求出a,m之間的關(guān)系式;
(3)當(dāng)m>0時,若拋物線y=a(x﹣m)2+2m向下平移m個單位長度后經(jīng)過點(diǎn)(1,1),求此拋物線的表達(dá)式;
(4)若拋物線y=a(x﹣m)2+2m向下平移|m|個單位長度后與x軸所截的線段長,與平移前相比有什么變化?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E為AD的中點(diǎn),延長CE交BA的延長線于點(diǎn)F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=100°,求∠ABE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10,BC=6,線段AC的垂直平分線MN分別交AC、AB于M、N兩點(diǎn),則△BCN的面積是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅紅和娜娜按下圖所示的規(guī)則玩“錘子、剪刀、布”游戲,
游戲規(guī)則:若一人出“剪刀”,另一人出“布”,則出“剪刀”者勝;若一人出“錘子”,另一人出“剪刀”,則出“錘子”者勝;若一人出“布”,另一人出“錘子”,則出“布”者勝,若兩人出相同的手勢,則兩人平局.
下列說法中錯誤的是
A. 紅紅不是勝就是輸,所以紅紅勝的概率為
B. 紅紅勝或娜娜勝的概率相等
C. 兩人出相同手勢的概率為
D. 娜娜勝的概率和兩人出相同手勢的概率一樣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com