4.梯形ABCD中,AD∥BC,以A為圓心,DA為半徑的圓經(jīng)過B、C、D三點(diǎn),若AD=10,BC=16,求梯形ABCD的面積.

分析 過A作AM⊥BC于M點(diǎn),根據(jù)垂徑定理得到BM=$\frac{1}{2}$BC=8,再在Rt△ABM中,利用勾股定理計(jì)算出AM的長(zhǎng),最后利用梯形的面積公式即可得到梯形ABCD的面積.

解答 解:過A作AM⊥BC于M點(diǎn),如圖:
∴BM=BC,
而AB=AD=10,BC=16,
∴BM=$\frac{1}{2}$BC=8,
在Rt△ABM中,AM=$\sqrt{A{M}^{2}-B{M}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴S梯形ABCD=$\frac{1}{2}$(10+16)×6=78.

點(diǎn)評(píng) 本題考查了圓的垂徑定理:垂直于弦的直徑平分弦,平分弦所對(duì)的。灰部疾榱斯垂啥ɡ砗吞菪蔚拿娣e公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.若x=3是方程ax+2x=14-a的解,則a的值為(  )
A.10B.5C.4D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.一個(gè)正方體的每個(gè)面都有一個(gè)漢字,其平面展開圖如圖所示,那么,在該正方體中與“設(shè)”字相對(duì)的字是(  )
A.B.C.學(xué)D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB為直徑的圓M交OC于D、E,連結(jié)AD、BD、BE.
(1)在不添加其他字母和線的前提下,直接寫出圖1中的兩對(duì)相似三角形.△OAD∽△CDB,△ADB∽△ECB
(2)直角梯形OABC中,以O(shè)為坐標(biāo)原點(diǎn),A在x軸正半軸上建立直角坐標(biāo)系(如圖2),若拋物線y=ax2-2ax-3a(a<0)經(jīng)過點(diǎn)A、B、D,且B為拋物線的頂點(diǎn).
①寫出A的坐標(biāo)(3,0),頂點(diǎn)B的坐標(biāo)(用a的代數(shù)式表示)(1,-4a).
②求拋物線的解析式.
③在x軸下方的拋物線上是否存在這樣的點(diǎn)P:過點(diǎn)P作PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.已知二次三項(xiàng)式x2-4x+m有一個(gè)因式是x+3,求另一個(gè)因式以及m的值時(shí),可以設(shè)另一個(gè)因式為x+n,則x2-4x+m=(x+3)(x+n).
即x2-4x+m=x2+(n+3)x+3n.
∴$\left\{\begin{array}{l}{n+3=-4}\\{m=3n}\end{array}\right.$解得,n=-7,m=-21,
∴另一個(gè)因式為x-7,m的值為-21.
類似地,二次三項(xiàng)式2x2+3x-k有一個(gè)因式是2x-5,則它的另一個(gè)因式以及k的值為(  )
A.x-1,5B.x+4,20C.x$+\frac{3}{2}$,$\frac{15}{2}$D.x+4,-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.平面內(nèi)有一等腰直角三角板(∠ACB=90°) 直線過點(diǎn)A.過點(diǎn)C作CE⊥MN于點(diǎn)E,過點(diǎn)B作BF⊥MN于點(diǎn)F.當(dāng)點(diǎn)E與點(diǎn)A重合時(shí)(如圖1),易證:AF+BF=2CE.
(1)當(dāng)三角板繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖2的位置時(shí),上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明,若不成立,也請(qǐng)說明理由;
(2)當(dāng)三角板繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖3的位置時(shí),線段AF、BF、CE之間又有怎樣的數(shù)量關(guān)系,請(qǐng)寫出你的猜想,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖1所示,四邊形AEFG與四邊形ABCD是正方形,其中G、A、B三點(diǎn)在同一直線上.連接DG、BE.完成下面問題:
(1)求證:BE=DG;
(2)如圖2,將正方形AEFG繞點(diǎn)A逆時(shí)針轉(zhuǎn)過一定角度時(shí),小明發(fā)現(xiàn):BE=DG且BE⊥DG,請(qǐng)你幫助小明證明這兩個(gè)結(jié)論;
(3)如圖3,小明還發(fā)現(xiàn):在旋轉(zhuǎn)過程中,分別連接EG、GB、BD、DE的中點(diǎn),得到的四邊形MNPQ是正方形.若AB=a,AE=b其中a>b,你能幫小明求出正方形MNPQ的面積的范圍嗎?寫出過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示,在正方形網(wǎng)格中,圖②是由圖①經(jīng)過旋轉(zhuǎn)變換得到的,其旋轉(zhuǎn)中心是點(diǎn)( 。
A.A點(diǎn)B.B點(diǎn)C.C點(diǎn)D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法中,正確的是( 。
A.兩條射線組成的圖形叫做角B.若AB=BC,則點(diǎn)B是AC的中點(diǎn)
C.兩點(diǎn)之間直線最短D.兩點(diǎn)確定一條直線

查看答案和解析>>

同步練習(xí)冊(cè)答案