【題目】用一個平面去截球,截面是________.

【答案】

【解析】

截面:用一個平面去截一個幾何體,截出的面叫做截面.依此即可求解.

用一個平面去截一個球,截面是圓.

故答案為:圓.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】①如圖1,AB∥CD,則∠A +∠E +∠C=180°;②如圖2,AB∥CD,則∠E =∠A +∠C;③如圖3,AB∥CD,則∠A +∠E-∠1=180° ; ④如圖4,AB∥CD,則∠A=∠C +∠P.以上結(jié)論正確的個數(shù)是( )

A. 、1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,B,C兩點把線段AD分成2:5:3三部分,MAD的中點,BM=6cm,求CMAD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點Pa,b),若點P的坐標為(akb,kab)(其中k為常數(shù),且k≠0),則稱點P為點Pk屬派生點

例如:P14)的“2屬派生點P12×4,2×14),即P9,6).

1)點P(-1,6)的“2屬派生點P的坐標為_____________

2)若點P“3屬派生點P的坐標為(6,2),則點P的坐標___________;

3)若點Px軸的正半軸上,點Pk屬派生點P點,且線段PP的長度為線段OP長度的2倍,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE∠DCA的度數(shù)

請將以下解答補充完整,

解:因為∠DAB+∠D=180°

所以DC∥AB__________

所以∠DCE=∠B__________

又因為∠B=95°,

所以∠DCE=________°;

因為AC平分∠DAB,∠CAD=25°,根據(jù)角平分線定義,

所以∠CAB=________=________°,

因為DC∥AB

所以∠DCA=∠CAB,__________

所以∠DCA=________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)今年8月的產(chǎn)值為a萬元, 9月份比8月份增加了10%,10月份比9月份增加了15%,則10月份的產(chǎn)值是(

A.a(1 10%)(1 15%)萬元B.(a 10%)(a 15%)萬元

C.a(1 90%)(1 85%)萬元D.a(1 10% 15%)萬元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:隨著人們認識的不斷深入,畢達哥拉斯學派逐漸承認不是有理數(shù),并給出了證明.假設(shè)是有理數(shù),那么存在兩個互質(zhì)的正整數(shù)p,q,使得,于是,兩邊平方得p2=2q2 因為2q2是偶數(shù),所以p2是偶數(shù),而只有偶數(shù)的平方才是偶數(shù),所以p也是偶數(shù).因此可設(shè)p=2s,代入上式,得4s2=2q2 , q2=2s2 , 所以q也是偶數(shù),這樣,pq都是偶數(shù),不互質(zhì),這與假設(shè)p,q互質(zhì)矛盾,這個矛盾說明, 不能寫成分數(shù)的形式,即不是有理數(shù).請你有類似的方法,證明不是有理數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,∠BAD的平分線交E,上,且,連接

(1) 判斷四邊形的形狀并證明;

(2) 若、相交于點,且四邊形的周長為, ,求的長度及四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃用104 000元購置一批電腦(這批款項須恰好用完,不得剩余或追加).經(jīng)過招標,其中平板電腦每臺1600元,臺式電腦每臺4000元,筆記本電腦每臺4600元.

(1)若學校同時購進其中兩種不同類型的電腦共50臺,請你幫學校設(shè)計該如何購買;

(2)若學校同時購進三種不同類型的電腦共26臺(三種類型的電腦都有),并且要求筆記本電腦的購買量不少于15臺.

查看答案和解析>>

同步練習冊答案