精英家教網(wǎng)已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.
(1)請說明DE是⊙O的切線;
(2)若∠B=30°,AB=8,求DE的長.
分析:(1)要想證DE是⊙O的切線,只要連接OD,求證∠ODE=90°即可.
(2)利用直角三角形和等邊三角形的特點來求DE的長.
解答:精英家教網(wǎng)解:(1)連接OD,則OD=OB,
∴∠B=∠ODB.(1分)
∵AB=AC,
∴∠B=∠C.(1分)
∴∠ODB=∠C.
∴OD∥AC.(2分)
∴∠ODE=∠DEC=90°.(1分)
∴DE是⊙O的切線.(1分)

(2)連接AD,
∵AB是⊙O的直徑,
∴∠ADB=90°.(1分)
BD=AB•cosB=8×
3
2
=4
3
.(2分)
又∵AB=AC,
∴CD=BD=4
3
,∠C=∠B=30°.(2分)
DE=
1
2
CD=2
3
.(1分)
點評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊答案