問題探究】
(1)如圖1,銳角△ABC中,分別以AB、AC為邊向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,連接BD,CE,試猜想BD與CE的大小關(guān)系,并說明理由.
【深入探究】
(2)如圖2,四邊形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45º,求BD的長.
(3)如圖3,在(2)的條件下,當(dāng)△ACD在線段AC的左側(cè)時,求BD的長.
(1)答:BD =CE. ················································································································· 1分
理由:∵∠BAE=∠CAD,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,··························································· 2分
又∵AE=AB,AC=AD,
∴△EAC≌△BAD (SAS) ,
∴BD=CE. ··························································································································· 4分
(2)解:如圖1,在△ABC的外部,以點A為直角頂點作等腰直角三角形BAE,使∠BAE=90º,AE=AB,連接EA、EB、EC. ····································································································································· 5分
∵,
∴,,
∴∠BAE=,
∴∠BAE+∠BAC=∠CAD+∠BAC,
即∠EAC=∠BAD,
∴△EAC≌△BAD (SAS) , ·························· 7分
∴BD=CE.
∵AE=AB=7,
∴, ∠AEC=∠AEB=45º.
又∵∠ABC=45º,
∴∠ABC+∠ABE=45º+45º=90º, ···························································································· 8分
∴EC==,
∴.
答:BD長是cm. ········································································································ 9分
(3)如圖2,在線段AC的右側(cè)過點A作AE⊥AB于A,交BC的延長線于點E, ···················· 10分
∴∠BAE=90º,
又∵∠ABC=45º,
∴∠E=∠ABC=45º,
∴AE=AB=7,.····················································································· 11分
又∵∠ACD=∠ADC=45 º,
∴∠BAE= ∠DAC=90º,
∴∠BAE∠BAC=∠DAC∠BAC,
即∠EAC=∠BAD,
∴△EAC≌△BAD (SAS) ,
∴BD=CE. ····································· 13分
∵BC=3,
∴BD=CE=(cm).
BD長是()cm.
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省濱?h七年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,,為的中點,,則的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省濱?h八年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
在平面直角坐標(biāo)系中,一次函數(shù)的圖像經(jīng)過( ).
A.第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.霧霾天氣嚴(yán)重影響市民的生活質(zhì)量.在今年寒假期間,某校八年一班的綜合實踐小組同學(xué)對“霧霾天氣的主要成因”隨機(jī)調(diào)查了所在城市部分市民,并對調(diào)查結(jié)果進(jìn)行了整理,繪制了如下不完整的統(tǒng)計圖表,觀察分析并回答下列問題.
⑴本次被調(diào)查的市民共有多少人?
⑵分別補(bǔ)全條形統(tǒng)計圖和扇形統(tǒng)計圖, 并計算圖2中區(qū)域B所對應(yīng)的扇形圓心角的度數(shù).
⑶若該市有100萬人口,請估計持有
A、B兩組主要成因的市民有多少人?
組別 | 霧霾天氣的主要成因 | 百分比 |
A | 工業(yè)污染 | 45% |
B | 汽車尾氣排放 |
|
C | 爐煙氣排放 | 15% |
D | 其他(濫砍濫伐等) |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為( 。
| A. | 50° | B. | 40° | C. | 30° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
用配方法解一元二次方程x2﹣6x﹣4=0,下列變形正確的是( )
| A. | (x﹣6)2=﹣4+36 | B. | (x﹣6)2=4+36 | C. | (x﹣3)2=﹣4+9 | D. | (x﹣3)2=4+9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.
(1)求BC的長;
(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com