【題目】知識再現(xiàn):
如果,,則線段的中點坐標(biāo)為;對于兩個一次函數(shù)和,若兩個一次函數(shù)圖象平行,則且;若兩個一次函數(shù)圖象垂直,則.
提醒:在下面這個相關(guān)問題中如果需要,你可以直接利用以上知識.
在平面直角坐標(biāo)系中,已知點,.
(1)如圖1,把直線向右平移使它經(jīng)過點,如果平移后的直線交軸于點,交x軸于點,請確定直線的解析式.
(2)如圖2,連接,求的長.
(3)已知點是直線上一個動點,以為對角線的四邊形是平行四邊形,當(dāng)取最小值時,請在圖3中畫出滿足條件的,并直接寫出此時點坐標(biāo).
【答案】(1);(2)5;(3)
【解析】
(1)用待定系數(shù)法可求直線AB的解析式,由平移的性質(zhì)可設(shè)直線A'B'的解析式為:,將點P坐標(biāo)代入可求直線A′B′的解析式;
(2)由P(6,4),B(6,0),點B'坐標(biāo)(9,0)可得BP⊥B'B,BP=4,BB'=3,由勾股定理可求B'P的長;
(3)由平行四邊形的性質(zhì)可得,AE=BE,當(dāng)CE⊥CO時,CE的值最小,即CD的值最小,由中點坐標(biāo)公式可求點E坐標(biāo),可求CE解析式,列出方程組可求點C坐標(biāo).
解:(1)設(shè)直線的解析式為:,過點兩點,有
∴,∴
直線的解析式為: ,
把直線向右平移使它經(jīng)過點
∴直線的解析式為,且過點
∴,∴
∴直線的解析式為
(2)∵直線交軸于點,交軸于點
∴當(dāng)時,
當(dāng)時,
∴點坐標(biāo),點坐標(biāo)
∵,,點坐標(biāo)
∴軸,,,
∴
(3)如圖,設(shè)與的交點為,
∵四邊形是平行四邊形,
∴,,
∴要使取最小值,即的值最小,
由垂線段最短可得:當(dāng)時,的值最小,即的值最小,
∵點,,且
∴點
∵,直線解析式為:
∴設(shè)解析式為,且過點
∴
∴
∴解析式為
∴聯(lián)立直線和的解析式成方程組,得
解得:
∴點
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級學(xué)生乘車去參加社會實踐話動,若每輛客車乘50人,還有12人不能上車;若每輛客車乘55人,則最后一輛空了8個座位,求該校租了多少輛客車?七年級學(xué)生多少人?
根據(jù)題意,小明、小紅分別列出了尚不完整的方程如下:
小明:50x口 口 ;小紅:
(其中“口”表示運算符號,“ ”表示數(shù)字)
小明所列方程中x表示的意義是:______;小紅所列方程中y表示的意義是:______;
請你把小明或小紅所列方程補充完整,并相應(yīng)解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題原型)在圖①的矩形中,點、、、分別在、、、上,若,則稱四邊形為矩形的反射四邊形;
(操作與探索)在圖②,圖③的矩形中,,,點、分別在、邊的格點上,試?yán)谜叫尉W(wǎng)格分別在圖②、圖③上作矩形的反射四邊形;
(發(fā)現(xiàn)與應(yīng)用)由前面的操作可以發(fā)現(xiàn),一個矩形有不同的反射四邊形,且這些反射四邊形的周長都相等.若在圖①的矩形中,,,則其反射四邊形的周長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°.
(1)請用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明);
(2)在(1)的條件下,若∠B=45°,AB=1,⊙P切BC于點D,求劣弧的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方法感悟:
(1)如圖①,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點G、H,使得四邊形EFGH的周長最小?若存在,求出它周長的最小值;若不存在,請說明理由.
問題解決:
(2)如圖②,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,經(jīng)研究,只有當(dāng)點E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點H在矩形ABCD內(nèi)部或邊上時,才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積,并寫出在以B為坐標(biāo)原點,直線BC為x軸,直線BA為y軸的坐標(biāo)系中,點H的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中點A到點B的距離為3,點C到點B的距離為7,如圖所示:設(shè)點A,B,C所對應(yīng)的數(shù)的和是m.
(1)若以C為原點,則m的值是_______;
(2)若原點0在圖中數(shù)軸上,且點C到原點0的距離為4,求m的值;
(3)動點P從A點出發(fā),以每秒2個單位長度的速度向終點C移動,動點Q同時從B點出發(fā),以每秒1個單位的速度向終點C移動,當(dāng)幾秒后,P、Q兩點間的距離為2?(直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點,且關(guān)于原點成中心對稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧,分別交AB,AC于點M和N,再分別以點M,N為圓心,大于MN長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長,交BC于點D,則下列說法中,正確的個數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC∶S△ABC=1∶3.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商店試銷一款成本為 50 元的排球,規(guī)定試銷期間單價不低于成本價,且獲利不得高于 40%。經(jīng)試銷發(fā)現(xiàn),銷售量 (個)與銷售單價 (元)之間滿足如圖所示的一次函數(shù)關(guān)系.
(1)試確定與 之間的函數(shù)關(guān)系式;
(2)若該體育用品商店試銷的這款排球所獲得的利潤為 元,試寫出利潤 (元)與銷售單價 (元)之間的函數(shù)關(guān)系式;當(dāng)試銷單價定為多少元時,該商店可獲最大利潤?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com