18.如圖,已知直線l1∥l2,直線l3和直線l1、l2分別交于點(diǎn)C和點(diǎn)D,P為直線l3上一點(diǎn),A、B分別是直線l1、l2上的定點(diǎn).設(shè)∠CAP=∠1,∠APB=∠2,∠DBP=∠3.
(1)若P點(diǎn)在線段CD(C、D兩點(diǎn)除外)上運(yùn)動(dòng)時(shí),問(wèn)∠1、∠2、∠3之間的關(guān)系是什么?說(shuō)明理由.
(2)在l1∥l2的前提下,若P點(diǎn)在線段CD之外時(shí),∠1、∠2、∠3之間的關(guān)系又怎樣?直接寫(xiě)出結(jié)果.

分析 (1)過(guò)點(diǎn)P作PE∥l1,根據(jù)l1∥l2可知PE∥l2,故可得出∠1=∠APE,∠3=∠BPE.再由∠2=∠APE+∠BPE即可得出結(jié)論;
(2)由于點(diǎn)P的位置不確定,故應(yīng)分當(dāng)點(diǎn)P在線段DC的延長(zhǎng)線上與點(diǎn)P在線段CD的延長(zhǎng)線上兩種情況進(jìn)行討論.

解答 (1)∠2=∠1+∠3.
證明:如圖1,過(guò)點(diǎn)P作PE∥l1,
∵l1∥l2
∴PE∥l2,
∴∠1=∠APE,∠3=∠BPE.
又∵∠2=∠APE+∠BPE,
∴∠2=∠1+∠3;

(2)①如圖2所示,當(dāng)點(diǎn)P在線段DC的延長(zhǎng)線上時(shí),∠2=∠3-∠1.
理由:過(guò)點(diǎn)P作PF∥l1,∠FPA=∠1.
∵l1∥l2,
∴PF∥l2,
∴∠FPB=∠3,
∴∠2=∠FPB-∠PFA=∠3-∠1;
②如圖3所示,當(dāng)點(diǎn)P在線段CD的延長(zhǎng)線上時(shí),∠2=∠1-∠3.
理由:過(guò)點(diǎn)P作PE∥l2,∠EPB=∠3.
∵l1∥l2,
∴PE∥l1
∴∠EPA=∠1,
∴∠2=∠EPA-∠EPB=∠1-∠3

點(diǎn)評(píng) 本題考查的是平行線的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,∠ACB=90°,AC=BC=4,M為AB的中點(diǎn).D是射線BC上一個(gè)動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,連接ED,N為ED的中點(diǎn),連接AN,MN.

(1)如圖1,當(dāng)BD=2時(shí),AN=$\sqrt{10}$,NM與AB的位置關(guān)系是垂直;
(2)當(dāng)4<BD<8時(shí),
①依題意補(bǔ)全圖2;
②判斷(1)中NM與AB的位置關(guān)系是否發(fā)生變化,并證明你的結(jié)論;
(3)連接ME,在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,當(dāng)BD的長(zhǎng)為何值時(shí),ME的長(zhǎng)最?最小值是多少?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,已知點(diǎn)O在直線AB上,∠1=65°15′,∠2=78°30′,則∠1+∠2=143°45′,∠3=36°15′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.先化簡(jiǎn),再求值:$\frac{{x}^{2}+2x}{{x}^{2}-4}$÷(1+x+$\frac{2x+2}{x-2}$),其中x=tan60°-tan45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知代數(shù)式(2x2+ax-y+6)-(2bx2-3x+5y-1),若此代數(shù)式的值與字母x的取值無(wú)關(guān),則a=-3,b=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.一塊長(zhǎng)方形綠地的面積為1200平方米,并且長(zhǎng)比寬多10米,如果設(shè)長(zhǎng)為x米,根據(jù)題意可列出方程x(x+10)=1200.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,點(diǎn)A在直線l1:y=-3x上,點(diǎn)B在經(jīng)過(guò)原點(diǎn)O的直線l2上,如果點(diǎn)A的縱坐標(biāo)與點(diǎn)B的橫坐標(biāo)相等,且OA=OB,那么直線l2的函數(shù)解析式是y=$\frac{1}{3}$x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.有3個(gè)大人決定帶領(lǐng)a名小孩通過(guò)旅行社取某旅游景區(qū)旅游,有兩家旅行社可供選擇,甲旅行社的收費(fèi)標(biāo)準(zhǔn)為:大人全價(jià),小孩7折優(yōu)惠;而已旅行社部分大人、小孩,一律八折優(yōu)惠;這兩家旅行社的全價(jià)一樣,都是每人500元.
(1)用代數(shù)式表示這3個(gè)大人和a名小孩分別通過(guò)這兩家旅行社去旅游的總費(fèi)用;
(2)如果這兩家旅行社的總費(fèi)用一樣,那么帶領(lǐng)的小孩有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)若a+b=5,ab=3,求$\frac{a}$+$\frac{a}$的值;
(2)化簡(jiǎn):$\frac{{m}^{2}+4mn+4{n}^{2}}{m-n}$÷(m+n-$\frac{3{n}^{2}}{m-n}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案