【題目】如圖,點A(-2,0), B(06),COB的中點,將繞點B逆時針旋轉(zhuǎn)90°后得到△A′BC′.若反比例函數(shù)的圖象恰好經(jīng)過AB的中點D,則k的值為(

A.12B.15C.D.

【答案】B

【解析】

A′Hy軸于H.證明△AOB≌△BHA′AAS),推出OA=BHOB=A′H,求出點A′坐標(biāo),再利用中點坐標(biāo)公式求出點D坐標(biāo)即可解決問題.

解:作A′Hy軸于H

∵∠AOB=A′HB=ABA′=90°,
∴∠ABO+A′BH=90°,∠ABO+BAO=90°,
∴∠BAO=A′BH
BA=BA′,
∴△AOB≌△BHA′AAS),
OA=BH,OB=A′H
∵點A的坐標(biāo)是(-20),點B的坐標(biāo)是(0,6),
OA=2OB=6,
BH=OA=2,A′H=OB=6,
OH=4
A′6,4),
BD=A′D
D3,5),
∵反比例函數(shù)的圖象經(jīng)過點D,
k=15
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,A=90°,AB=6AC=8,DE分別是邊AB,AC的中點,點P從點D出發(fā)沿DE方向運動,過點PPQBCQ,過點QQRBAACR,當(dāng)點Q與點C重合時,點P停止運動.設(shè)BQ=xQR=y

(1)求點DBC的距離DH的長;

(2)y關(guān)于x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

(3)是否存在點P,使PQR為等腰三角形?若存在,請求出所有滿足要求的x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+2x+2m0

1)求證:不論m為何值,該方程總有兩個實數(shù)根;

2)若直角ABC的兩直角邊ABAC的長是該方程的兩個實數(shù)根,斜邊BC的長為3,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校興趣小組以問卷調(diào)查的形式,隨機調(diào)查了某地居民對武漢封城后續(xù)措施的了解情況,設(shè)置了多選題,并將調(diào)查結(jié)果繪制成如圖不完整的統(tǒng)計圖.

選項

A

B

C

D

E

后續(xù)措施

擴大宣傳力度

分類隔離病人

封閉小區(qū)

聘請專業(yè)物資

采取其他措施

選擇人次

25

85

15

35

已知平均每人恰好選擇了兩個選項,根據(jù)以上信息回答下列問題:

1)求參與本次問卷調(diào)查的居民人數(shù),并補全條形統(tǒng)計圖;

2)在扇形統(tǒng)計圖中,求E選項對應(yīng)圓心角α的度數(shù);

3)根據(jù)此次調(diào)查結(jié)果估計該地100萬居民當(dāng)中選擇D選項的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,的頂點AB,O均落在格點上,為⊙O的半徑.

1的大小等于_________(度);

2)將繞點O順時針旋轉(zhuǎn),得,點A,B旋轉(zhuǎn)后的對應(yīng)點為,.連接,設(shè)線段的中點為M,連接.當(dāng)取得最大值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺畫出點,并簡要說明點的位置是如何找到的(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點M,與BC相交于點N.連接BM,DN

(1)求證:四邊形BMDN是菱形;

(2)AB=4AD=8,求MD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)小組想利用所學(xué)的知識了解某廣告牌的高度(圖中的長),經(jīng)測量知,在B處測得點D的仰角為,在A處測得點C的仰角為,,且A、B、H三點在一條直線上,請根據(jù)以上數(shù)據(jù)計算GH的長(,要求結(jié)果精確得到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,點軸正半軸上,且,以為邊在第一象限內(nèi)作正方形,且雙曲線經(jīng)過點

1)求的值;

2)將正方形沿軸負(fù)方向平移得到正方形,當(dāng)點恰好落在雙曲線上時,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,AB=10,AC=6,連結(jié)OC,弦AD分別交OC,BC于點EF,其中點EAD的中點.

1)求證:∠CAD=CBA

2)求OE的長.

查看答案和解析>>

同步練習(xí)冊答案