【題目】用鐵片制作的圓錐形容器蓋如圖所示.

1)我們知道:把平面內(nèi)線段OP繞著端點O旋轉(zhuǎn)1周,端點P運動所形成的圖形叫做圓.類比圓的定義,給圓錐下定義

2)已知OB2 cmSB3 cm,

①計算容器蓋鐵皮的面積;

②在一張矩形鐵片上剪下一個扇形,用它圍成該圓錐形容器蓋.以下是可供選用的矩形鐵片的長和寬,其中可以選擇且面積最小的矩形鐵片是

A6 cm×4 cm B6 cm×4.5 cm C7 cm×4 cm D7 cm×4.5 cm

【答案】1)把平面內(nèi),以直角三角形的直角邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)而成的曲面所圍成的幾何體叫做圓錐;(2)①6π;②B.

【解析】

(1)根據(jù)平面內(nèi)圖形的旋轉(zhuǎn),給圓錐下定義;(2)①根據(jù)圓錐側(cè)面積公式求容器蓋鐵皮的面積;②首先求得扇形的圓心角的度數(shù),然后求得弓形的高就是矩形的寬,長就是圓的直徑.

解:(1)把平面內(nèi),以直角三角形的直角邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)而成的曲面所圍成的幾何體叫做圓錐;

2)①由題意,容器蓋鐵皮的面積即圓錐的側(cè)面積

即容器蓋鐵皮的面積為6πcm;

②解:設圓錐展開扇形的圓心角為n度,

2π×2=

解得:n=240°,

如圖:∠AOB=120°,

則∠AOC=60°,

OB=3

OC=1.5,

∴矩形的長為6cm,寬為4.5cm,

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象與軸交于兩點(點在點的左側(cè)),與軸交于點,作直線,將直線下方的二次函數(shù)圖象沿直線向上翻折,與其它剩余部分組成一個組合圖象,若線段與組合圖象有兩個交點,則的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“早黑寶”葡萄品種是我省農(nóng)科院研制的優(yōu)質(zhì)新品種,在我省被廣泛種植,鄧州市某葡萄種植基地2017年種植“早黑寶”100畝,到2019年“卓黑寶”的種植面積達到196.

1)求該基地這兩年“早黑寶”種植面積的平均增長率;

2)市場調(diào)查發(fā)現(xiàn),當“早黑寶”的售價為20/千克時,每天能售出200千克,售價每降價1元,每天可多售出50千克,為了推廣宣傳,基地決定降價促銷,同時減少庫存,已知該基地“早黑寶”的平均成本價為12/千克,若使銷售“早黑寶”每天獲利1750元,則售價應降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達乙地過程中yx之間的函數(shù)關(guān)系.已知兩車相遇時快車比慢車多行駛60千米.若快車從甲地到達乙地所需時間為t時,則此時慢車與甲地相距_____千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yx2+x+3x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,過點Cx軸的平行線交拋物線于點P.連接AC

1)求點P的坐標及直線AC的解析式;

2)如圖2,過點Px軸的垂線,垂足為E,將線段OE繞點O逆時針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為αα90°),連接FA、FC.求AF+CF的最小值;

3)如圖3,點M為線段OA上一點,以OM為邊在第一象限內(nèi)作正方形OMNG,當正方形OMNG的頂點N恰好落在線段AC上時,將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形OMNG,當點M與點A重合時停止平移.設平移的距離為t,正方形OMNG的邊MNAC交于點R,連接OP、OR、PR,是否存在t的值,使OPR為直角三角形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大學生創(chuàng)業(yè)團隊有研發(fā)、管理和操作三個小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說法中不正確的是(

A.團隊平均日工資不變B.團隊日工資的方差不變

C.團隊日工資的中位數(shù)不變D.團隊日工資的極差不變

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某養(yǎng)殖場計劃用96米的竹籬笆圍成如圖所示的①、②、③三個養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AGBG32.設BG的長為2x米.

1)用含x的代數(shù)式表示DF ;

2x為何值時,區(qū)域③的面積為180平方米;

3x為何值時,區(qū)域③的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC和△ADE均為等邊三角形,點DBC邊上,DEAC相交于點F,圖中相似的三角形有( 。⿲Γ

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx4經(jīng)過A(﹣3,0),B5,﹣4)兩點,與y軸交于點C,連接AB,ACBC

1)求拋物線的表達式;

2)求ABC的面積;

3)拋物線的對稱軸上是否存在點M,使得ABM是直角三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案