【題目】閱讀材料,用配方法求最值.

已知a,b為非負(fù)實(shí)數(shù),∵a+b﹣2=(2+2﹣2=(20,a+b2,當(dāng)且僅當(dāng)“a=b”時(shí),等號成立.示例:當(dāng)x0時(shí),求y=x++1的最小值;

解:y=(x++12=3,當(dāng)x=,即x=1時(shí),y的最小值為3.

(1)探究:當(dāng)x0時(shí),求y=的最小值;

(2)問題解決:隨著人們生活水平的提高,汽車已成為越來越多家庭的交通工具,假設(shè)某種汽車的購車費(fèi)用為10萬元,每年應(yīng)繳保險(xiǎn)費(fèi)等各類費(fèi)用共計(jì)0.4萬元,n年的保養(yǎng),維修費(fèi)用總和為萬元,問這種汽車使用多少年報(bào)廢最合算(即使用多少年的年平均費(fèi)用最少,年平均費(fèi)用=所有費(fèi)用:年數(shù)n)?最少年平均費(fèi)用為多少萬元?

【答案】(1)x=1時(shí),y的最小值為5;(2)n=10時(shí),這種汽車使用10年報(bào)廢最合算,最少年平均費(fèi)用為2.5萬元.

【解析】

(1)首先將原式化為,然后應(yīng)用配方法,求出當(dāng)x>0時(shí),原式的最小值即可.

(2)首先根據(jù)題意,求出年平均費(fèi)用,然后應(yīng)用題中配方法,求出這種小轎車使用多少年報(bào)廢最合算,以及最少年平均費(fèi)用為多少萬元即可.

(1)y==x+3+≥2+3=5,

∴當(dāng)x=,即x=1時(shí),y的最小值為5.

(2)年平均費(fèi)用=(+0.4n+10)÷n=++≥2+==2+0.5=2.5,

∴當(dāng)=時(shí),

n=10時(shí),這種汽車使用10年報(bào)廢最合算,最少年平均費(fèi)用為2.5萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是8×8的正方形網(wǎng)格,請?jiān)谒o網(wǎng)格中按下列要求操作:

1)在網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為(﹣2,4),點(diǎn)B的坐標(biāo)為(﹣4,2);

2)在第二象限內(nèi)的格點(diǎn)上畫一點(diǎn)C,連接AC,BC,使△BC成為以AB為底的等腰三角形,且腰長是無理數(shù).

①此時(shí)點(diǎn)C的坐標(biāo)為   ,△ABC的周長為   (結(jié)果保留根號);

②畫出△ABC關(guān)于y軸對稱的△AB'C(點(diǎn)A,B,C的對應(yīng)點(diǎn)分別A',B',C),并寫出A,B,C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC與△CDE都是等邊三角形,且∠EBD=65°,則∠AEB的度數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)、上且,連接、,過點(diǎn)的延長線于點(diǎn)

求證:的切線;

,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AHBC,垂足為H,D為直線BC上一動(dòng)點(diǎn)(不與點(diǎn)BC重合),在AD的右側(cè)作ADE,使得AE=AD,∠DAE=BAC,連接CE.

(1)當(dāng)D在線段BC上時(shí),求證:BAD≌△CAE

(2)當(dāng)點(diǎn)D運(yùn)動(dòng)到何處時(shí),ACDE,并說明理由;

(3)當(dāng)CEAB時(shí),若ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果,無需寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADAE分別是△ABC的角平分線和高線,∠B45°,∠C73°.

1)求∠ADB的度數(shù);

2)求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的三個(gè)頂點(diǎn)分別為, , .若反比例函數(shù)在第一象限內(nèi)的圖象與ABC有公共點(diǎn),則k的取值范圍是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8/千克,下面是他們在活動(dòng)結(jié)束后的對話.

小麗:如果以10/千克的價(jià)格銷售,那么每天可售出300千克.

小強(qiáng):如果以13/千克的價(jià)格銷售,那么每天可售出240千克.

小紅:通過調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,每天銷售200千克以上.

(1)求每天的銷售量y(千克)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)該超市銷售這種水果每天獲取的利潤達(dá)到1040元,那么銷售單價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小明一家一起去旅游,如圖是小明設(shè)計(jì)的某旅游景點(diǎn)的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長代表實(shí)際長度100m),在該圖紙上可看到兩個(gè)標(biāo)志性景點(diǎn)A,B.若建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,則點(diǎn)A(-3,1),B(-3,-3),第三個(gè)景點(diǎn)C(3,2)的位置已破損.

(1)請?jiān)趫D中標(biāo)出景點(diǎn)C的位置;

(2)小明想從景點(diǎn)B開始游玩,途經(jīng)景點(diǎn)A,最后到達(dá)景點(diǎn)C,求小明一家最短的行走路程(參考數(shù)據(jù):≈6,結(jié)果保留整數(shù)).

查看答案和解析>>

同步練習(xí)冊答案