如圖①,將一張直角三角形紙片折疊,使點(diǎn)與點(diǎn)重合,這時(shí)為折痕,為等腰三角形;再繼續(xù)將紙片沿的對(duì)稱軸折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原直角三角形的內(nèi)接矩形,另一個(gè)是拼合成的無(wú)縫隙、無(wú)重疊的矩形),我們稱這樣兩個(gè)矩形為“疊加矩形”
圖① 圖② 圖③
(1)如圖②,正方形網(wǎng)格中的能折疊成“疊加矩形”嗎?如果能,請(qǐng)?jiān)趫D②中畫出折痕;
(2)如圖③,在正方形網(wǎng)格中,以給定的為一邊,畫出一個(gè)斜三角形,使其頂點(diǎn)在格點(diǎn)上,且折成的“疊加矩形”為正方形;
(3)若一個(gè)三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是什么?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經(jīng)過(guò)點(diǎn)C,交y軸于點(diǎn)G。
(1)點(diǎn)C、D的坐標(biāo)分別是C( ),D( );
(2)求頂點(diǎn)在直線y=上且經(jīng)過(guò)點(diǎn)C、D的拋物線的解析式;
(3)將(2)中的拋物線沿直線y=平移,平移后的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E(頂點(diǎn)在y軸右側(cè))。平移后是否存在這樣的拋物線,使⊿EFG為等腰三角形?[源:Zxxk.Com]
若存在,請(qǐng)求出此時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:線段a,b,∠α(如圖).請(qǐng)用直尺和圓規(guī)作一個(gè)平行四邊形,使它的兩條鄰邊長(zhǎng)分別等于線段a,b,它們的夾角等于∠α.要求僅用直尺和圓規(guī)作圖,寫出作法,并保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
小明打算用一張半圓形的紙做一個(gè)圓錐。在制作過(guò)程中,他先將半圓剪成面積比為1:2的兩個(gè)扇形.
(1)請(qǐng)你在圖中畫出他的裁剪痕跡.(要求尺規(guī)作圖,保留作圖痕跡)
(2)若半圓半徑是3,大扇形作為圓錐的側(cè)面,則小明必須在小扇形紙片中剪下多大的圓才能組成圓錐?小扇形紙片夠大嗎(不考慮損耗及接縫)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,一束光線與水平面成60°的角度照射地面,現(xiàn)在地面AB上支放一個(gè)平面鏡CD,使這束光線經(jīng)過(guò)平面鏡反射后成水平光線,則平面鏡CD與地面AB所成角∠DCB的度數(shù)等于 ( )
A.30° B.45° C.50° D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某住宅小區(qū)六月份1日至6日每天用水量變化情況如折線圖所示,那么這6天的平均用水量是( )
A.30噸 B. 31 噸 C.32噸 D.33噸
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知BC=EC,∠BCE=∠ACD,要使能用SAS說(shuō)明△ABC≌△DEC,則應(yīng)添加的一個(gè)條件為_(kāi)_____.(答案不唯一,只需填一個(gè))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com