如圖,等邊三角形ABC的邊長為2,BC邊上的高交BC于點D,過點D作DE⊥AB于點E,則AE的長是________.


分析:根據(jù)等邊三角形ABC的性質(zhì)求出BD的長,根據(jù)勾股定理得出AD的長,再設(shè)ED的長為y,AE的長為x,則BE的長為2-x,根據(jù)DE⊥AB和勾股定理即可求出AE的值.
解答:∵△ABC是等邊三角形,邊長為2,
∴BD=1,
∴AD===,
設(shè)ED的長為y,AE的長為x,則BE的長為2-x,
∵DE⊥AB,
∴x2+y2=3,(2-x)2+y2=1,
∴y2=3-x2,
∴(2-x)2+3-x2=1,
解得:x=,
則AE的長是
故答案為:
點評:此題考查了等腰三角形的性質(zhì),用到的知識點是等腰三角形的性質(zhì)和勾股定理,利用勾股定理表示出各邊的長是本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,等邊三角形AOB的頂點A在反比例函數(shù)y=
3
x
(x>0)的圖象上,點B在x軸上.
(1)求點B的坐標(biāo);
(2)求直線AB的函數(shù)表示式;
(3)在y軸上是否存在點P,使△OAP是等腰三角形?若存在,直接把符合條件的點P的坐標(biāo)都寫出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的兩動點,且總使AD=BE,AE與CD交于點F,AG⊥CD于點G,則
FG
AF
=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等邊三角形ABC的邊長為6,點D,E分別在邊AB,AC上,且AD=AE=2.若點F從點B開始以每秒1個單位長的速度沿射線BC方向運動,設(shè)點F運動的時間為t秒.當(dāng)t>0時,直線FD與過點A且平行于BC的直線相交于點G,GE的延長線與BC的延長線相交于點H,AB與GH相交于點O.
(1)設(shè)△EGA的面積為S,寫出S與t的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時,AB⊥GH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊三角形ABC的邊長為a,若D、E、F、G分別為AB、AC、CD、BF的中點,則△BEG的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

已知:如圖,在等邊三角形AB,AD=BE=CF,D,E,F不是各邊的中點,AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個三角形全等,在圖中全等三角形的組數(shù)是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步練習(xí)冊答案