分析 延長CB,截取BM=DE,連接AM、EF,由平行線的性質(zhì)和已知條件得出∠D=∠ABM,由SAS證明△ABM≌△ADE,得出∠BAM=∠DAE,AM=AE,證出∠MAF=∠EAF,由SAS證明△AEF≌△AMF,得出EF=MF=DE+BF,∠AFE=∠AFM,由平行線的性質(zhì)證出∠EFA=∠EGF,得出EG=EF,即可得出結(jié)論.
解答 解:DE+BF=GE;理由如下:
延長CB,截取BM=DE,連接AM、EF,如圖所示:
∵AD∥BC,
∴∠DCB+∠D=180°,
∵∠ABC=∠DCB,
∴∠ABC+∠D=180°,
∵∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADE中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠ABM=∠D}&{\;}\\{BM=DE}&{\;}\end{array}\right.$,
∴△ABM≌△ADE(SAS),
∴∠BAM=∠DAE,AM=AE,
∵∠EAF=$\frac{1}{2}$∠BAD,
∴∠DAE+∠BAF=∠EAF,
∴∠BAF+∠BAM=∠EAF,
∴∠MAF=∠EAF,
在△AEF和△AMF中,$\left\{\begin{array}{l}{AE=AM}&{\;}\\{∠EAF=∠MAF}&{\;}\\{AF=AF}&{\;}\end{array}\right.$,
∴△AEF≌△AMF(SAS),
∴EF=MF=DE+BF,∠AFE=∠AFM,
∵EG∥BC,
∴∠EGF=∠AFM,
∴∠EFA=∠EGF,
∴GE=EF,
∴DE+BF=GE.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì)、梯形的性質(zhì)、等腰三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),有一定難度,需要通過作輔助線兩次證明三角形全等才能得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
等級(jí) | 成績(分) | 頻數(shù)(人數(shù)) | 頻率 |
A | 90~100 | 19 | x |
B | 75~89 | 20 | 0.4 |
C | 60~74 | n | 0.16 |
D | 60以下 | 3 | 0.06 |
合計(jì) | 50 | 1.00 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -50% | B. | 0% | C. | 12.5% | D. | 15% |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com