【題目】如圖,階梯圖的每個臺階上都標著一個數,從下到上的第1個至第4個臺階上依次標著-5、-2、1、9,且任意相鄰四個臺階上數的和都相等.
(1)求第5個臺階上的數是多少?
(2)求從下到上前31個臺階上數的和;
(3)試用含(為正整數)的式子表示出數“1”所在的臺階數.
【答案】(1)-5;(2)15;(3)4k-1.
【解析】
(1)將前4個數字相加可得;
(2)根據“相鄰四個臺階上數的和都相等” 方程求解可得;
(3)根據“臺階上的數是每4個一循環(huán)”求解可得;觀察發(fā)現:由循環(huán)規(guī)律即可知道“1”所在的臺階數為4k-1.
解:(1)由題意得前4個臺階上的數的和是:-5-2+1+9=3,
∴-2+1+9+x=3,解得:x=-5,則第5個臺階上的數x=-5;
(2)由題意知臺階上的數字是每4個一循環(huán),而31=4×8-1
∴從下到上前31個臺階上的數字和是:8×3-9=15
即從下到上前31個臺階上的數字和是15.
(3)觀察發(fā)現:數“1”所在的臺階數為3,7,11,15,19…,k為正整數,所以數“1”所在的臺階數為4k-1.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC的中點,DE⊥AB,DF⊥AC,垂足分別是E、F,BE=CF.
求證:(1)△BDE≌△CDF;
(2)AD是△ABC的角平分線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,給正五邊形的頂點依次編號 12345,若從某一頂點開始,沿正五邊形的邊順時針行走,頂點編號數字是幾就走幾個邊長,則稱 這種走法為一次移位,如:小宇在編號為 3 的頂點上時,那么他應該走 3 個邊長,即 3-4-5-1 為第一次移位,這時他到達編號為 1 的頂點;然后從 1-2 為第二次移位.若小宇從編號為 2 的頂點開始,第 14 次移位后,則他所處頂點的編號為_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A1,A2,A3,…,An是x軸上的點,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分別過點A1,A2,A3,…,An作x軸的垂線交二次函數y=x2(x>0)的圖象于點P1,P2,P3,…,Pn.若記△OA1P1的面積為S1,過點P1作P1B1⊥A2P2于點B1,記△P1B1P2的面積為S2,過點P2作P2B2⊥A3P3于點B2,記△P2B2P3的面積為S3……依次進行下去,最后記△Pn-1Bn-1Pn(n>1)的面積為Sn,則Sn=( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時,AB寬20 m,水位上升到警戒線CD時,CD到拱橋頂E的距離僅為1 m,這時水面寬度為10 m.
(1)在如圖所示的坐標系中求拋物線的解析式;
(2)若洪水到來時,水位以每小時0.3 m的速度上升,從正常水位開始,持續(xù)多少小時到達警戒線?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個四分之一圓組成(半徑相同)
⑴請用代數式表示裝飾物的面積:________,用代數式表示窗戶能射進陽光的面積是______(結果保留π)
⑵當a=,b=1時,求窗戶能射進陽光的面積是多少?(取π≈3 )
⑶小亮又設計了如圖2的窗簾(由一個半圓和兩個四分之一圓組成,半徑相同),請你幫他算一算此時窗戶能射進陽光的面積是否更大?如果更大,那么大多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于半圓O,其中點A,D在直徑上,點B,C在半圓弧上,AB∥CD,∠B=90°,若AO=3,∠BAD=120°,則BC=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一輛汽車和一輛摩托車分別從A,B兩地去同一城市,l1 ,l2分別表示汽車、摩托車離A地的距離s(km)隨時間t(h)變化的圖象,則下列結論:①摩托車比汽車晚到1 h;②A,B兩地的距離為20 km;③摩托車的速度為45 km/h,汽車的速度為60 km/h;④汽車出發(fā)1 h后與摩托車相遇,此時距離B地40 km;⑤相遇前摩托車的速度比汽車的速度快.其中正確的結論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖1,直線l1∥x軸,直線l2為第一、三象限的角平分線,直線l1與l2相交于A(3,3),點B為直越l1上一點,點C為x軸上一點,P(x,y)為一動點.
(1)當點P(x,y)在x軸上時,y= ,當點P(x,y)在直線l1上,y= ,當點P(x,y)在直線l2上時y= .
如圖1,當點P在直線l1下方、x軸上方、直線l2左上方區(qū)域時,x,y滿足如下條件:,則∠APO,∠PAB,∠POC的數量關系是 .
如圖2,當點P在直線l1下方、x軸上方、直線l2右下方區(qū)域時,x,y滿足如下條件:,則∠APO,∠PAB,∠POC的數量關系是 .
(2)當點P在直線l1上方區(qū)域,且點P不在直線l2時,x,y滿足的條件為:,請畫出圖形,猜想∠APO,∠PAB,∠POC的數量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com