【題目】在平面直角坐標(biāo)系中,已知,,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng);點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng).如果、同時(shí)出發(fā),用表示移動(dòng)的時(shí)間,

(1)用含的代數(shù)式表示:線段______;______________.

(2)當(dāng)相似時(shí),求出的值.

【答案】(1)cm()cm;;(2)當(dāng)s時(shí),相似.

【解析】

1)根據(jù),,點(diǎn)P、點(diǎn)Q的運(yùn)動(dòng)速度和運(yùn)動(dòng)方向即可用t表示出OPOQ的長(zhǎng);根據(jù)三角形的面積計(jì)算公式即可表示出.

2)分兩種情況討論,根據(jù)POQ∽△AOB時(shí),POQ∽△BOA時(shí),,最后求解即可;

(1)根據(jù)題意得:

PO=cm;OQ=()cm

=;

(2)①若POQ∽△AOB時(shí),

,

.

②若POQ∽△BOA時(shí),

,

.

∴當(dāng)時(shí),相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開發(fā),造福社會(huì).某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場(chǎng)調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價(jià)y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤(rùn)不低于5元.

1)求每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

2)設(shè)該公司日銷售利潤(rùn)為P元,求每天的最大銷售利潤(rùn)是多少元?

3)在試銷售過程中,受國(guó)家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國(guó)家給予公司補(bǔ)貼mm≤40)元.在獲得國(guó)家每件m元補(bǔ)貼后,公司的日銷售利潤(rùn)隨日銷售量的增大而增大,則m的取值范圍是   (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6E,F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF;

(2)AE=2,求FC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC上的點(diǎn),且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,則EC=( 。

A. 0.9cm B. 1cm C. 3.6cm D. 0.2cm

【答案】A

【解析】試題分析:根據(jù)平行線分線段成比例定理得到=,然后利用比例性質(zhì)求EC的長(zhǎng).

解:∵DE∥BC,

=,即=

∴EC=0.9cm).

故選A

考點(diǎn):平行線分線段成比例.

型】單選題
結(jié)束】
6

【題目】點(diǎn)C是線段AB的黃金分割點(diǎn)(AC>BC,AB=10cm,則AC等于(

A. 6 cm B. cm C. cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC,ECD邊上一點(diǎn),將BCE沿BE折疊,使得C落到矩形內(nèi)點(diǎn)F的位置,連接AF,若tanBAF,則CE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,點(diǎn)、為邊上的動(dòng)點(diǎn)(不含端點(diǎn)),.下列三個(gè)結(jié)論:①當(dāng)時(shí),則;②;③的周長(zhǎng)不變,其中正確結(jié)論的個(gè)數(shù)是(

A.0B.1

C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 拋物線軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為  

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3BC2,點(diǎn)MBC上,連接AM,作∠AMN=∠AMB,點(diǎn)N在直線AD上,MNCD于點(diǎn)E

(1)求證:△AMN是等腰三角形;

(2)求證:AM22BMAN;

(3)當(dāng)MBC中點(diǎn)時(shí),求ME的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+x+3x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C:連接BC,點(diǎn)P為線段BC上方拋物線上的一動(dòng)點(diǎn),連接OPBC于點(diǎn)Q

1)如圖1,當(dāng)值最大時(shí),點(diǎn)E為線段AB上一點(diǎn),在線段BC上有兩動(dòng)點(diǎn)MNMN上方),且MN=1,求PM+MN+NE-BE的最小值;

2)如圖2,連接AC,將AOC沿射線CB方向平移,點(diǎn)AC,O平移后的對(duì)應(yīng)點(diǎn)分別記作A1,C1O1,當(dāng)C1B=O1B時(shí),連接A1B、O1B,將A1O1B繞點(diǎn)O1沿順時(shí)針方向旋轉(zhuǎn)90°后得A2O1B1在直線x=上是否存在點(diǎn)K,使得A2B1K為等腰三角形?若存在,直接寫出點(diǎn)K的坐標(biāo);不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案