【題目】如圖,在ABCD中,∠BAD的角平分線交BC于點E,交DC的延長線于點F,連接DE.
(1)求證:DA=DF;
(2)若∠ADE=∠CDE=30°,DE=2,求ABCD的面積.
【答案】(1)詳見解析;(2)4
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根據(jù)角平分線定義得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;
(2)求出△ABF為等邊三角形,根據(jù)等邊三角形的性質(zhì)得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE=,解直角三角形求出EF=2,BF=4,AB=BF=4,BC=AD=2,即可得出答案.
(1)證明:∵四邊形ABCD為平行四邊形,
∴AB∥CD.
∴∠BAF=∠F.
∵AF平分∠BAD,
∴∠BAF=∠DAF.
∴∠F=∠DAF.
∴AD=FD.
(2)解:∵∠ADE=∠CDE=30°,AD=FD,
∴DE⊥AF.
∵tan∠ADE=,
∴AE=2.
∴S平行四邊形ABCD=2S△ADE=AEDE=4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點O作EF∥AB交BC于點F,交AC于點E,過點O作OD⊥BC于D,下列四個結(jié)論:①∠AOB=90°+∠C;②AE+BF=EF;③當∠C=90°時,E、F分別是AC、BC的中點;④若OD=CE+CF=則S△CEF=,其中正確的是______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來,各地“廣場舞”噪音干擾的問題備受關注,相關人員對本地區(qū)15﹣65歲年齡段的500名市民進行了隨機調(diào)查,在調(diào)查過程中對“廣場舞”噪音干擾的態(tài)度有以下五種:A:沒影響;B:影響不大;C:有影響,建議做無聲運動,D:影響很大,建議取締;E:不關心這個問題,將調(diào)查結(jié)果繪統(tǒng)計整理并繪制成如下兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息解答下列問題:
(1)填空m= ,態(tài)度為C所對應的圓心角的度數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)若全區(qū)15﹣65歲年齡段有20萬人,估計該地區(qū)對“廣場舞”噪音干擾的態(tài)度為B的市民人數(shù);
(4)若在這次調(diào)查的市民中,從態(tài)度為A的市民中抽取一人的年齡恰好在年齡段15﹣35歲的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分點,AE、CF的延長線分別交DC、AB于N、M點,那么四邊形MENF的面積是( )
A.B.C.2D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知,平分.
(1) ;
(2)若在圖1中畫射線,設,平分,用含的代數(shù)式表示的大;
(3)如圖2,若線段與分別為同一鐘表上某一時刻的時針與分針,,在時針與分針轉(zhuǎn)動過程中,始終平分,則經(jīng)過多少時間后,的度數(shù)第一次等于.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(點A在點B的左邊)AB=4,與y軸交于點C,OC=OA,點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM,如圖1,點P在點Q左邊,當矩形PQNM的周長最大時,求m的值,并求出此時的△AEM的面積;
(3)已知H(0,﹣1),點G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時).圖中折線、線段分別表示甲、乙兩車所行路程(千米)與時間(小時)之間的函數(shù)關系對應的圖象(線段表示甲出發(fā)不足2小時因故停車檢修).請根據(jù)圖象所提供的信息,解決如下問題:
(1)求乙車所行路程與時間的函數(shù)關系式;(4分)
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;(4分)
(3)乙車出發(fā)多長時間,甲、乙兩車相距80千米?(寫出解題過程) (4分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明在大樓45米高(即PH=45米,且PH⊥HC)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的
坡度i(即tan∠ABC)為1: .(點P、H、B、C、A在同一個平面上
點H、B、C在同一條直線上)
(1)∠PBA的度數(shù)等于________度;
(2)求A、B兩點間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.414, ≈1.732).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于C、D兩點, C點的坐標是(4,-1),D點的橫坐標為-2.
(1)求反比例函數(shù)與一次函數(shù)的關系式;
(2)根據(jù)圖象直接回答:當x為何值時,一次函數(shù)的值小于反比例函數(shù)的值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com