已知Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,設(shè)⊙C的半徑為rcm,若⊙C與斜邊AB只有一個(gè)公共點(diǎn),則半徑r的取值范圍是
 
分析:因?yàn)橐箞A與斜邊只有一個(gè)公共點(diǎn),所以該圓和斜邊相切或和斜邊相交,但只有一個(gè)交點(diǎn)在斜邊上.
若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.
解答:解:根據(jù)勾股定理求得直角三角形的斜邊是13.
當(dāng)圓和斜邊相切時(shí),則半徑即是斜邊上的高,等于
60
13
;
當(dāng)圓和斜邊相交,且只有一個(gè)交點(diǎn)在斜邊上時(shí),可以讓圓的半徑大于短直角邊而小于長直角邊,則5<r≤12.
r=
60
13
或5<r≤12
點(diǎn)評(píng):此題注意考慮兩種情況,只需保證圓和斜邊只有一個(gè)公共點(diǎn)即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長線于E,BA、CE延長線相交于F點(diǎn).
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,兩直角邊AC、BC的長是關(guān)于x的方程x2-(m+5)x+6m=0的兩個(gè)實(shí)數(shù)根.求m的值及AC、BC的長(BC>AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,已知Rt△ABC中,∠C=90°∠A=36°,以C為圓心,CB為半徑的圓交AB于P,則弧BP的度數(shù)是
72
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠ACB=90°,CA=CB,點(diǎn)D在BC的延長線上,點(diǎn)E在AC上,且CD=CE,延長BE交AD于點(diǎn)F,求證:BF⊥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�