如圖1,四邊形ABCD是正方形,G是CD邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.我們探究下列圖中線段BG、線段DE的長(zhǎng)度關(guān)系及所在直線的位置關(guān)系:
(1)①猜想如圖1中線段BG、線段DE的長(zhǎng)度關(guān)系及所在直線的位置關(guān)系;
②將圖1中的正方形CEFG繞著點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,得到如圖2、如圖3情形.請(qǐng)你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中正方形改為矩形(如圖6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結(jié)論哪些成立,哪些不成立?若成立,以圖5為例簡(jiǎn)要說(shuō)明理由.
【答案】分析:(1)①延長(zhǎng)BG交DE于O,根據(jù)正方形性質(zhì)推出BC=CD=AB,CG=CE,∠BCD=∠ECD=90°,證△BCG≌△DCE,推出BG=DE,∠CBG=∠CDE,求出∠CDE+∠DGO=90°,求出∠DOG=90°即可;②求出∠BCG=∠DCE,證△BCG≌△DCE,推出BG=DE,∠CBG=∠CDE,求出∠CDE+∠DGO=90°,求出∠DOG=90°即可;
(2)求出==,加上∠BCG=∠DCE,證△BCG∽△DCE,得出==,∠CBG=∠CDE,即可判定BG=DE不成立;推出∠EDC+∠DHO=90°,求出∠DOH=90°即可.
解答:(1)①BG=DE,BG⊥DE,
理由是:

延長(zhǎng)BG交DE于O,
∵四邊形ABCD、CGFE是正方形,
∴BC=CD=AB,CG=CE,∠BCD=∠ECD=90°,
∵在△BCG和△DCE中
,
∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
∵∠CBG+∠BGC=90°,
又∵∠DGO=∠BGC,
∴∠EDC+∠DGO=90°,
∴∠DOG=180°-90°=90°,
∴BG⊥DE,
即BG=DE,BG⊥DE;

②仍成立,
證明:∵四邊形ABCD、CGFE是正方形,
∴BC=CD,CG=CE,∠BCD=∠ECG=90°,
∴∠BCD+∠DCG=∠ECG+∠DCG,
即∠BCG=∠DCE,
∵在△BCG和△DCE中

∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
∵∠CBG+∠BGC=90°,
又∵∠DGO=∠BGC,
∴∠EDC+∠DGO=90°,
∴∠DOG=180°-90°=90°,
∴BG⊥DE,
即BG=DE,BG⊥DE;

(2)解:BG=DE不成立,BG⊥DE成立,
理由是:∵四邊形ABCD和四邊形GCEF都是矩形,
∴AB=CD=a,BC=b,CE=ka,CG=kb,
==,
∵∠BCG=∠DCE(已證),
∴△BCG∽△DCE,
==,∠CBG=∠CDE,
∵∠CBG+∠BHC=90°,
又∵∠DHO=∠BHC,
∴∠EDC+∠DHO=90°,
∴∠DOH=180°-90°=90°,
∴BG⊥DE,
則BG=DE不成立,BG⊥DE成立.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是正方形性質(zhì),矩形的性質(zhì),全等三角形性質(zhì)和判定,相似三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,主要考查學(xué)生運(yùn)用定理進(jìn)行推理的能力,題目比較典型,綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點(diǎn)D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂精英家教網(wǎng)足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)含y的代數(shù)式表示AE;
(2)y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(3)設(shè)四邊形DECF的面積為S,x在什么范圍時(shí)s隨x增大而增大.x在什么范圍時(shí)s隨x增大而減小,并畫出s與x圖象;
(4)求出x為何值時(shí),面積s最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,AE=EF=FC,BE、AD相交于點(diǎn)G,下列4個(gè)結(jié)論:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四邊形EFDG;其中正確的有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案