【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B在x軸上,將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)E、F.
(1)若點(diǎn)B的坐標(biāo)是(﹣4,0),請(qǐng)?jiān)趫D中畫出△AEF,并寫出點(diǎn)E、F的坐標(biāo).
(2)當(dāng)點(diǎn)F落在x軸的上方時(shí),試寫出一個(gè)符合條件的點(diǎn)B的坐標(biāo).
【答案】(1)見解析;點(diǎn)E的坐標(biāo)是(3,3),點(diǎn)F的坐標(biāo)是(3,﹣1).(2)B的坐標(biāo)是(﹣2,0).
【解析】
試題分析:(1)△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后得到△AEF,所以AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,據(jù)此在圖中畫出△AEF,并寫出點(diǎn)E、F的坐標(biāo)即可.
(2)根據(jù)點(diǎn)F落在x軸的上方,可得EF<AO;然后根據(jù)EF=OB,判斷出OB<3,即可求出一個(gè)符合條件的點(diǎn)B的坐標(biāo)是多少.
解:(1)∵△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后得到△AEF,
∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,
∴△AEF在圖中表示為:
∵AO⊥AE,AO=AE,
∴點(diǎn)E的坐標(biāo)是(3,3),
∵EF=OB=4,
∴點(diǎn)F的坐標(biāo)是(3,﹣1).
(2)∵點(diǎn)F落在x軸的上方,
∴EF<AO,
又∵EF=OB,
∴OB<AO,AO=3,
∴OB<3,
∴一個(gè)符合條件的點(diǎn)B的坐標(biāo)是(﹣2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,已知EH=EB=3,AE=4,則CH的長是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A(﹣1,4)向右平移2個(gè)單位后,再向上平移1個(gè)單位,得A1,則A1點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四個(gè)數(shù)﹣3.14,0,1,2中為負(fù)數(shù)的是( ).
A.﹣3.14 B.0 C.1 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AC∥BD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個(gè)角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°角)
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=∠PAC+∠PBD;
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當(dāng)動(dòng)點(diǎn)P落在第③部分時(shí),全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為4,頂點(diǎn)A、C分別在x軸、y軸的正半軸,拋物線y=﹣x2+bx+c經(jīng)過B、C兩點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),連接AC、BD、CD.
(1)求此拋物線的解析式.
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和四邊形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com