如圖,已知△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長(zhǎng)線上,∠B=∠D=30°.
(1)AD是⊙O的切線嗎?說(shuō)明理由;
(2)若OD⊥AB,BC=5,求AD的長(zhǎng);
(3)在(2)的前提下,連接BD,則BD和⊙O及AD有何關(guān)系?簡(jiǎn)要說(shuō)明理由.

解:(1)AD是⊙O的切線.
理由:連接AD,
∵∠B=30°,
∴∠AOD=2∠B=60°,
∵∠D=30°,
∴∠OAD=90°,
即OA⊥AD,
∴AD是⊙O的切線;

(2)∵OD⊥AB,BC=5,
∴AC=BC=5,
∵OA=OC,∠AOC=60°,
∴△AOC是等邊三角形,
∴OA=AC=5,
∵OA⊥AD,∠D=30°,
∴OD=2OA=10,
∴AD==5

(3)連接OB,
∵OD⊥AB,
∴BE=AE,
∴AD=BD,
在△OBD和△OAD中,

∴△OBD≌OAD(SSS),
∴∠OBD=∠OAD=90°,
即OB⊥BD,
∴BD是⊙O的切線.
分析:(1)首先連接AD,由∠B=∠D=30°,可求得∠AOC=60°,∠OAD=90°,繼而可證得AD是⊙O的切線;
(2)由OD⊥AB,BC=5,根據(jù)垂徑定理,可得AC=5,易得△AOC是等邊三角形,可求得OA的長(zhǎng),繼而求得答案;
(3)首先連接OB,易證得OD垂直平分AB,△OAD≌△OBD,繼而證得結(jié)論.
點(diǎn)評(píng):此題考查了切線的判定、全等三角形的判定與性質(zhì)以及垂徑定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC內(nèi)接于⊙O,∠C=45°,AB=4,則⊙O的半徑為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC內(nèi)接于⊙O,AD平分∠BAC,交⊙O于點(diǎn)D,過(guò)D作⊙O的切線與AC的延長(zhǎng)線交于點(diǎn)E.
(1)求證:BC∥DE;
(2)若AB=3,BD=2,求CE的長(zhǎng);
(3)在題設(shè)條件下,為使BDEC是平行四邊形,△ABC應(yīng)滿足怎樣的條件(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•樊城區(qū)模擬)如圖,已知△ABC內(nèi)接于⊙O,弦AD交BC于E,過(guò)點(diǎn)D的切線MN交直線AB于M,交直線AC于N.
(1)求證:AE•DE=BE•CE;
(2)連接DB,CD,若MN∥BC,試探究BD與CD的數(shù)量關(guān)系;
(3)在(2)的條件下,已知AB=6,AN=15,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,AE平分∠BAC,且AD⊥BC于點(diǎn)D,連接OA.
求證:∠OAE=∠EAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,AB=AC,∠A=36°,CD是⊙O的直徑,求∠ACD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案