分析 連接BD,根據(jù)AB=AD,可得∠ABD=∠ADB,再根據(jù)∠ABC=∠ADC,可證∠CBD=∠CDB,再利用SAS證明三角形全等即可.
解答 證明:連接BD,
∵AB=AD,
∴∠ABD=∠ADB,
又∵∠ABC=∠ADC,
∴∠CBD=∠ABC-∠ABD,∠CDB=∠ADC-∠ADB,
∴∠CBD=∠CDB,
∴BC=DC,
在△ABC與△ADC中,
$\left\{\begin{array}{l}{AB=AD}\\{∠ABC=∠ADC}\\{BC=DC}\end{array}\right.$,
∴△ABC≌△ADC(SAS),
∴∠BAC=∠DAC,
∴AC平分∠BAD.
點(diǎn)評(píng) 此題主要考查全等三角形的判定與性質(zhì)的理解和掌握,連接BD,求證△ABD是等腰三角形,這是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2:1 | B. | 2:3 | C. | 4:9 | D. | 5:4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com