【題目】已知雙曲線與直線交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(3,2).
(1)由題意可得的值為______,的值為________,點(diǎn)B的坐標(biāo)為_________;
(2)直接寫(xiě)出當(dāng)時(shí),的取值范圍;
(3)若點(diǎn)P在第一象限的雙曲線上,試求出的值及點(diǎn)P的坐標(biāo)。
【答案】(1)m=6,,B(-3,-2);(2)-3<x<0或x>3;(3)n=3,P(1,6).
【解析】
(1)把A坐標(biāo)代入反比例解析式求出m的值,確定出反比例解析式,把A坐標(biāo)代入直線解析式求出k的值,利用對(duì)稱(chēng)性求出B坐標(biāo)即可;
(2)畫(huà)出圖象,觀察圖象即可得出結(jié)論;
(3)把P坐標(biāo)代入反比例解析式求出n的值,確定出P坐標(biāo)即可.
(1)把A(3,2)代入反比例解析式得:m=6;
把A(3,2)代入直線解析式得:k,由對(duì)稱(chēng)性得:B(﹣3,﹣2).
故答案為:6;;(﹣3,﹣2);
(2)畫(huà)出函數(shù)圖象,觀察可知:當(dāng)時(shí),x的取值范圍是-3<x<0或x>3;
(3)把P(n﹣2,n+3)代入y中得:(n﹣2)(n+3)=6,整理得:n2+n﹣12=0,即(n﹣3)(n+4)=0,解得:n=3或n=﹣4(舍去),∴n=3,則P(1,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC中,斜邊AB的長(zhǎng)為2,O為AB的中點(diǎn),P為AC邊上的動(dòng)點(diǎn),OQ⊥OP交BC于點(diǎn)Q,M為PQ的中點(diǎn),當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)M所經(jīng)過(guò)的路線長(zhǎng)為( 。
A. B. C. 1 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y =的圖象經(jīng)過(guò)點(diǎn)A(1,-3),一次函數(shù)y =kx +b的圖象經(jīng)過(guò)點(diǎn)A與點(diǎn)C(0,-4),且與反比例函數(shù)的圖象相交于另一點(diǎn)B.試確定點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC,∠B=90°,點(diǎn)P由A開(kāi)始沿AB向B運(yùn)動(dòng),速度是1cm/s,點(diǎn)Q由B開(kāi)始沿BC向C運(yùn)動(dòng),速度是2cm/s,如果P、Q同時(shí)出發(fā),經(jīng)過(guò)多長(zhǎng)時(shí)間△PBQ的面積等于7cm2,請(qǐng)列出方程估計(jì)解的大致范圍(誤差不超過(guò)0.01s).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,點(diǎn)D的坐標(biāo)是(0,),以點(diǎn)C為頂點(diǎn)的拋物線y=ax2+bx+c恰經(jīng)過(guò)x軸上的點(diǎn)A,B.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線向上平移后恰好經(jīng)過(guò)點(diǎn)D,求平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)認(rèn)真閱讀下面的數(shù)學(xué)小探究系列,完成所提出的問(wèn)題:
(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,過(guò)點(diǎn)D做BC邊上的高DE,則DE與BC的數(shù)量關(guān)系是 ,△BCD的面積為 ;
(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=a,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,請(qǐng)用含a的式子表示△BCD的面積,并說(shuō)明理由;
(3)探究3:如圖③,在等腰三角形ABC中,AB=AC,BC=a,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,試探究用含a的式子表示△BCD的面積,要有探究過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號(hào)召,幸福商場(chǎng)用3300元購(gòu)進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:
進(jìn)價(jià)(元/只) | 售價(jià)(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場(chǎng)甲、乙兩種節(jié)能燈各購(gòu)進(jìn)了多少只?
(2)全部售完100只節(jié)能燈后,商場(chǎng)共計(jì)獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過(guò)點(diǎn)A(2,3).
(1)求這個(gè)函數(shù)的解析式;
(2)判斷點(diǎn)B(-1,6),C(3,2)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由;
(3)當(dāng)-3<x<-1時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校開(kāi)展以素質(zhì)提升為主題的研學(xué)活動(dòng),推出了以下四個(gè)項(xiàng)目供學(xué)生選擇:A.模擬駕駛;B.軍事競(jìng)技;C.家鄉(xiāng)導(dǎo)游;D.植物識(shí)別.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中一個(gè)項(xiàng)目.八年級(jí)(3)班班主任寧老師對(duì)全
班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問(wèn)題:
(1)八年級(jí)(3)班學(xué)生總?cè)藬?shù)是多少,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)寧老師發(fā)現(xiàn)報(bào)名參加“植物識(shí)別”的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這組學(xué)生中任意挑選兩名擔(dān)任活動(dòng)記錄員,那么恰好選1名男生和1名女生擔(dān)任活動(dòng)記錄員的概率;
(3)若學(xué)校學(xué)生總?cè)藬?shù)為2000人,根據(jù)八年級(jí)(3)班的情況,估計(jì)全校報(bào)名軍事競(jìng)技的學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com