【題目】如圖,O在等邊△ABC內(nèi),∠BOC=150°,將△BOC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)后,得△ADC,連接OD.
(1)△COD是______三角形.
(2)若OB=5,OC=3,求OA的長.
【答案】(1)等邊;(2)OA=.
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可證△COD是等邊三角形;
(2)由等邊三角形的性質(zhì)可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的長.
解:(1)∵將△BOC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)后,得△ADC,
∴△BOC≌△ADC,
∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,
∴△COD是等邊三角形,
故答案為:等邊;
(2)∵△COD是等邊三角形,
∴OD=OC=3,∠CDO=60°,
∵△BOC≌△ADC,
∴∠ADC =∠BOC=150°,
∴∠ADO=∠ADC﹣∠ODC=90°,
∴AO2=AD2+OD2=9+25=34,
∴AO=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點(diǎn),AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時(shí),求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一條雙向公路隧道,其橫斷面由拋物線和矩形ABCD的三邊DA、AB、BC圍成,隧道最大高度為4.9米,AB=10米,BC=2.4米,若有一輛高為4米、寬為2米的集裝箱的汽車要通過隧道,為了使箱頂不碰到隧道頂部,又不違反交通規(guī)則(汽車應(yīng)靠道路右側(cè)行駛,不能超過道路中線),汽車的右側(cè)必須離開隧道右壁幾米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出以下結(jié)論:①a+b+c<0;②b2-4ac>0;③b>0;④4a-2b+c<0;⑤c-a>1,其中正確的結(jié)論有(。
A. ①②④ B. ①②③ C. ①②⑤ D. ①②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,AE是∠BAC的角平分線.CD⊥AE,與AE的延長線交于D點(diǎn),與AB的延長線交于F點(diǎn)。求證CD=AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC.
(1)求證:AE平分∠DAB;
(2)若AD=8,BC=6,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為點(diǎn)D、E,AD與BE交于點(diǎn)F,BF=AC, ∠ABE=22°,則∠CAD的度數(shù)是________°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com