如圖,E是等邊△ABC中AC邊上的點,∠1=∠2,BE=CD,則對△ADE的形狀最準確的判斷是


  1. A.
    等腰三角形
  2. B.
    等邊三角形
  3. C.
    不等邊三角形
  4. D.
    不能確定形狀
B
試題分析:先由△ABC為等邊三角形,可得AB=AC,再有∠1=∠2,BE=CD,根據(jù)“SAS”證得△ABE≌△ACD,即得AE=AD,∠BAE=∠CAD=60°,從而可得△ADE是等邊三角形.
∵△ABC為等邊三角形
∴AB=AC
∵∠1=∠2,BE=CD
∴△ABE≌△ACD
∴AE=AD,∠BAE=∠CAD=60°
∴△ADE是等邊三角形.
故選B.
考點:本題考查的是等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì)
點評:解答本題的關鍵是證得△ABE≌△ACD,再結(jié)合有一個角為60°的等腰三角形是等邊三角形。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,點D是線段BC上的一個動點(點D不與點B、C重合),△ADE是以AD為邊的等邊三角形,過點E作BC的平行線,分別交AB、AC于點F、G,連接BE.
(1)若△ABC的面積是1,則△ADE的最小面積為
3
4
3
4

(2)求證:△AEB≌ADC;
(3)探究四邊形BCGE是怎樣特殊的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結(jié)BD并延長與CE交于點E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,P為△ABC內(nèi)任意一點,PE∥AB,PF∥AC.那么,△PEF是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,D是AC的中點,F(xiàn)為邊AB上一動點,AF=nBF,E為直線BC上一點,且∠EDF=120°.
 
(1)如圖1,當n=2時,求
CE
CD
=
1
3
1
3
;
(2)如圖2,當n=
1
3
時,求證:CD=2CE;
(3)如圖3,過點D作DM⊥BC于M,當
n=3
n=3
時,C點為線段EM的中點.

查看答案和解析>>

同步練習冊答案