如圖,D是等邊△ABC的AC邊上的中點,點E在BC的延長線上,DE=DB,△ABC的周長是9,則∠E=________°,CE=________.

30    
分析:由△ABC為等邊三角形,且BD為邊AC的中線,根據(jù)“三線合一”得到BD平分∠ABC,而∠ABC為60°,得到∠DBE為30°,又因為DE=DB,根據(jù)等邊對等角得到∠E與∠DBE相等,故∠E也為30°;
由等邊三角形的三邊相等且周長為9,求出AC的長為3,且∠ACB為60°,根據(jù)∠ACB為△DCE的外角,根據(jù)三角形的外角等于與它不相鄰的兩個內角之和,求出∠CDE也為30°,根據(jù)等角對等邊得到CD=CE,都等于邊長AC的一半,從而求出CE的值.
解答:∵△ABC為等邊三角形,D為AC邊上的中點,
∴BD為∠ABC的平分線,且∠ABC=60°,
即∠DBE=30°,又DE=DB,
∴∠E=∠DBE=30°,
∵等邊△ABC的周長為9,∴AC=3,且∠ACB=60°,
∴∠CDE=∠ACB-∠E=30°,即∠CDE=∠E,
∴CD=CE=AC=
故答案為:30;
點評:此題考查了等邊三角形的性質,利用等邊三角形的性質可以解決角與邊的有關問題,尤其注意等腰三角形“三線合一”性質的運用,及“等角對等邊”、“等邊對等角”的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,點D是線段BC上的一個動點(點D不與點B、C重合),△ADE是以AD為邊的等邊三角形,過點E作BC的平行線,分別交AB、AC于點F、G,連接BE.
(1)若△ABC的面積是1,則△ADE的最小面積為
3
4
3
4
;
(2)求證:△AEB≌ADC;
(3)探究四邊形BCGE是怎樣特殊的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結BD并延長與CE交于點E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,P為△ABC內任意一點,PE∥AB,PF∥AC.那么,△PEF是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,D是AC的中點,F(xiàn)為邊AB上一動點,AF=nBF,E為直線BC上一點,且∠EDF=120°.
 
(1)如圖1,當n=2時,求
CE
CD
=
1
3
1
3
;
(2)如圖2,當n=
1
3
時,求證:CD=2CE;
(3)如圖3,過點D作DM⊥BC于M,當
n=3
n=3
時,C點為線段EM的中點.

查看答案和解析>>

同步練習冊答案