如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(-4,4).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿x軸向點(diǎn)O運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O同時(shí)出發(fā),以相同的速度沿x軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)P到達(dá)點(diǎn)O時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接BP,過P點(diǎn)作BP的垂線,與過點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BD與y軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).
(1)∠PBD的度數(shù)為
 
,點(diǎn)D的坐標(biāo)為
 
(用t表示);
(2)當(dāng)t為何值時(shí),△PBE為等腰三角形?
(3)探索△POE周長是否隨時(shí)間t的變化而變化?若變化,說明理由;若不變,試求這個(gè)定值.
考點(diǎn):四邊形綜合題,解一元一次方程,全等三角形的判定與性質(zhì),等腰三角形的性質(zhì),勾股定理,正方形的性質(zhì)
專題:代數(shù)幾何綜合題,壓軸題
分析:(1)易證△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點(diǎn)D的坐標(biāo).
(2)由于∠EBP=45°,故圖1是以正方形為背景的一個(gè)基本圖形,容易得到EP=AP+CE.由于△PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進(jìn)行求解,然后結(jié)合條件進(jìn)行取舍,最終確定符合要求的t值.
(3)由(2)已證的結(jié)論EP=AP+CE很容易得到△POE周長等于AO+CO=8,從而解決問題.
解答:解:(1)如圖1,
由題可得:AP=OQ=1×t=t(秒)
∴AO=PQ.
∵四邊形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°-∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,
∠BAP=∠PQD
∠BPA=∠PDQ
AB=PQ

∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t.
∴點(diǎn)D坐標(biāo)為(t,t).
故答案為:45°,(t,t).

(2)①若PB=PE,
由△PAB≌△DQP得PB=PD,
顯然PB≠PE,
∴這種情況應(yīng)舍去.
②若EB=EP,
則∠PBE=∠BPE=45°.
∴∠BEP=90°.
∴∠PEO=90°-∠BEC=∠EBC.
在△POE和△ECB中,
∠PEO=∠EBC
∠POE=∠ECB
EP=BE

∴△POE≌△ECB(AAS).
∴OE=CB=OC.
∴點(diǎn)E與點(diǎn)C重合(EC=0).
∴點(diǎn)P與點(diǎn)O重合(PO=0).
∵點(diǎn)B(-4,4),
∴AO=CO=4.
此時(shí)t=AP=AO=4.
③若BP=BE,
在Rt△BAP和Rt△BCE中,
BA=BC
BP=BE

∴Rt△BAP≌Rt△BCE(HL).
∴AP=CE.
∵AP=t,
∴CE=t.
∴PO=EO=4-t.
∵∠POE=90°,
∴PE=
PO2+EO2

=
2
(4-t).
延長OA到點(diǎn)F,使得AF=CE,連接BF,如圖2所示.
在△FAB和△ECB中,
AB=CB
∠BAF=∠BCE=90°
AF=CE

∴△FAB≌△ECB.
∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+∠EBC=45°.
∴∠FBP=∠FBA+∠ABP
=∠EBC+∠ABP=45°.
∴∠FBP=∠EBP.
在△FBP和△EBP中,
BF=BE
∠FBP=∠EBP
BP=BP

∴△FBP≌△EBP(SAS).
∴FP=EP.
∴EP=FP=FA+AP
=CE+AP.
∴EP=t+t=2t.
2
(4-t)=2t.
解得:t=4
2
-4
∴當(dāng)t為4秒或(4
2
-4)秒時(shí),△PBE為等腰三角形.

(3)∵EP=CE+AP,
∴OP+PE+OE=OP+AP+CE+OE
=AO+CO
=4+4
=8.
∴△POE周長是定值,該定值為8.
點(diǎn)評:本題考查了正方形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)與判定、勾股定理等知識,考查了分類討論的思想,考查了利用基本活動(dòng)經(jīng)驗(yàn)解決問題的能力,綜合性非常強(qiáng).熟悉正方形與一個(gè)度數(shù)為45°的角組成的基本圖形(其中角的頂點(diǎn)與正方形的一個(gè)頂點(diǎn)重合,角的兩邊與正方形的兩邊分別相交)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

甲種食物適宜保鮮的溫度是1-5℃,乙種食物適宜保鮮的溫度是3-8℃,若將這兩種食物一起同時(shí)保鮮,適宜的溫度是( 。
A、1-3℃B、3-5℃
C、5-8℃D、1-8℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:(
1
2
-1-(
3
-2)0-|-3|+
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

第一次模擬試后,數(shù)學(xué)科陳老師把一班的數(shù)學(xué)成績制成如圖的統(tǒng)計(jì)圖,并給了幾個(gè)信息:①前兩組的頻率和是0.14;②第一組的頻率是0.02;③自左到右第二、三、四組的頻數(shù)比為3:9:8,然后布置學(xué)生(也請你一起)結(jié)合統(tǒng)計(jì)圖完成下列問題:
(1)全班學(xué)生是多少人?
(2)成績不少于90分為優(yōu)秀,那么全班成績的優(yōu)秀率是多少?
(3)若不少于100分可以得到A+等級,則小明得到A+的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,過C作CD⊥AB于D,求證:CD2=AD•DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在三角形紙片ABC中,AD平分∠BAC,將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,展開后折痕分別交AB、AC于點(diǎn)E、F,連接DE、DF.求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在“黃袍山國家油茶產(chǎn)業(yè)示范園”建設(shè)中,某農(nóng)戶計(jì)劃購買甲、乙兩種油茶樹苗共1000株.已知乙種樹苗比甲種樹苗每株貴3元,且用100元錢購買甲種樹苗的株數(shù)與用160元錢購買乙種樹苗的株數(shù)剛好相同.
(1)求甲、乙兩種油茶樹苗每株的價(jià)格;
(2)如果購買兩種樹苗共用5600元,那么甲、乙兩種樹苗各買了多少株?
(3)調(diào)查統(tǒng)計(jì)得,甲、乙兩種樹苗的成活率分別為90%,95%.要使這批樹苗的成活率不低于92%,且使購買樹苗的費(fèi)用最低,應(yīng)如何選購樹苗?最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用長為32米的籬笆圍一個(gè)矩形養(yǎng)雞場,設(shè)圍成的矩形一邊長為x米,面積為y平方米.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),圍成的養(yǎng)雞場面積為60平方米?
(3)能否圍成面積為70平方米的養(yǎng)雞場?如果能,請求出其邊長;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將二次函數(shù)y=2x2-1的圖象沿y軸向上平移2個(gè)單位,所得圖象對應(yīng)的函數(shù)表達(dá)式為
 

查看答案和解析>>

同步練習(xí)冊答案