精英家教網 > 初中數學 > 題目詳情

【題目】全球氣候變暖導致-些冰川融化并消失在冰川|消失12年后,一種低等植物苔蘚,就開始在巖石上生長,每一個苔蘚都會長成近似的圓形,苔蘚的直徑和其生長年限近似地滿足如下的關系式:d=7 (t≥12),其中d表示苔蘚的直徑,單位是厘米,t代表冰川消失的時間(單位:年)。

(1)計算冰川消失16年后苔蘚的直徑為多少厘米?

(2)如果測得一些苔蘚的直徑是35厘米,問冰川約是在多少年前消失的?

【答案】(1)14cm;

(2)冰川消失16年后苔蘚的直徑為14cm,冰川約是在37年前消失的.

【解析】

試題分析:1)根據題意可知分別是求當t=16時,d的值,直接把對應數值代入關系式即可求解;

2)根據題意可知是求當d=35時,t的值,直接把對應數值代入關系式即可求解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知點AB、CD、E在同一直線上,且ACBD,E是線段BC的中點.

(1)點E是線段AD的中點嗎?說明理由;

(2)當AD=10,AB=3時,求線段BE的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果一個三角形能被一條線段分割成兩個等腰三角形,那么稱這條線段為這個三角形的特異線,稱這個三角形為特異三角形.

(1)如圖1,△ABC中,∠B=2∠C,線段AC的垂直平分線交AC于點D,交BC于點E.
求證:AE是△ABC的一條特異線.
(2)如圖2,已知BD是△ABC的一條特異線,其中∠A= ,∠ABC為鈍角,求出所有可能的∠ABC的度數.
(3)如圖3,△ABC是一個腰長為2的等腰銳角三角形,且它是特異三角形,若它的頂角
度數為整數,請求出其特異線的長度;若它的頂角度數不是整數,請直接寫出頂角度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,已知△ABC與△CDA關于點O對稱,過O作EF分別交AD,BC于點E,F,下面的結論:①點E和點F,點B和點D是關于點O的對應點;②直線BD必經過點O;③四邊形ABCD是中心對稱圖形;④四邊形DEOC與四邊形BFOA的面積必相等;⑤△AOE與△COF成中心對稱,其中正確的有(  )

A. 1個 B. 2個 C. 3個 D. 5個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O是等邊△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:
①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;
②點O與O′的距離為4;
③四邊形AO BO′的面積為6+3
④∠AOB=150°;
⑤SAOC+SAOB=6+
其中正確的結論是( )

A.②③④⑤
B.①③④⑤
C.①②③⑤
D.①②④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形 ABCD ,ADBC,AB=BC=CD=AD=4,A=C=60°,連接 BD,將BCD 繞點 B 旋轉,當 BD( BD′) AD 交于一點 E,BC(即 BC′)同時與 CD 交于一點 F 時,下列結論正確的是(

①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周長的最小值是4+2

A. ①② B. ②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.則ABCD的周長為_____,面積為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)解不等式2(x+1)-1≥3x+2,并把它的解集在數軸上表示出來;

(2)解不等式-1≥,并將解集在數軸上表示出來.

查看答案和解析>>

同步練習冊答案