【題目】如圖,邊長(zhǎng)為6的大正方形中有兩個(gè)小正方形,若兩個(gè)小正方形的面積分別為S1、S2 , 則S1+S2的值為( 。
A. 16 B. 17 C. 18 D. 19
【答案】B
【解析】試題分析:由圖可得,S2的邊長(zhǎng)為3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分別算出S1、S2的面積,即可解答.
解:如圖,
設(shè)正方形S1的邊長(zhǎng)為x,
∵△ABC和△CDE都為等腰直角三角形,
∴AB=BC,DE=DC,∠ABC=∠D=90°,
∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,
∴AC=BC=2CD,
又∵AD=AC+CD=6,
∴CD==2,
∴EC2=22+22,即EC=2;
∴S1的面積為EC2=2×2=8;
∵∠MAO=∠MOA=45°,
∴AM=MO,
∵M(jìn)O=MN,
∴AM=MN,
∴M為AN的中點(diǎn),
∴S2的邊長(zhǎng)為3,
∴S2的面積為3×3=9,
∴S1+S2=8+9=17.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把–3+(–2)–(+1)改為省略加號(hào)的和的形式是
A. –3+2+1 B. –3–2+1
C. –3–2–1 D. –3+2–1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中, , , . 是經(jīng)過點(diǎn)的直線, 于, 于.
(1)求證: .
(2)若將繞點(diǎn)旋轉(zhuǎn),使與相交于點(diǎn) (如圖②),其他條件不變,
求證: .
(3)在(2)的情況下,若的延長(zhǎng)線過的中點(diǎn)(如圖③),連接,
求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列去括號(hào)正確的是( )
A.a+(b﹣c)=a+b+c
B.a﹣(b﹣c)=a﹣b﹣c
C.a﹣(b﹣c)=a﹣b+c
D.a+(b﹣c)=a﹣b+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長(zhǎng)線與AD的延長(zhǎng)線交于點(diǎn)E.
(1)若∠A=60°,求BC的長(zhǎng);
(2)若sinA=,求AD的長(zhǎng).
(注意:本題中的計(jì)算過程和結(jié)果均保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在y軸上,位于原點(diǎn)的下方,且距離原點(diǎn)4個(gè)單位長(zhǎng)度的點(diǎn)的坐標(biāo)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com