函數(shù)常用的表示方法有三種.
已知A、B兩地相距30千米,小王以40千米/時(shí)的速度騎摩托車從A地出發(fā)勻速前往B地參加活動(dòng).請(qǐng)選擇兩種方法來表示小王與B地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知一次函數(shù)y=x+b的圖象與x軸,y軸交于點(diǎn)A、B.
(1)若將此函數(shù)圖象沿x軸向右平移2個(gè)單位后經(jīng)過原點(diǎn),則b= ;
(2)若函數(shù)y1=x+b圖象與一次函數(shù)y2=kx+4的圖象關(guān)于y軸對(duì)稱,求k、b的值;
(3)當(dāng)b>0時(shí),函數(shù)y1=x+b圖象繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)n°(0°<n°<180°)后,對(duì)應(yīng)的函數(shù)關(guān)系式為y=-x+b,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
爾凡駕車從甲地到乙地,設(shè)他出發(fā)第xmin時(shí)的速度為ykm/h,圖中的折線表示他在整個(gè)駕車過程中y與x之間的函數(shù)關(guān)系.
(1)當(dāng)20≤x≤30時(shí),汽車的平均速度為 km/h,該段時(shí)間行駛的路程為 km;
(2)當(dāng)30≤x≤35時(shí),求y與x之間的函數(shù)關(guān)系式,并求出爾凡出發(fā)第32min時(shí)的速度;
(3)如果汽車每行駛100km耗油8L,那么爾凡駕車從甲地到乙地共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,直線與x軸相交于點(diǎn)A,與直線相交于點(diǎn)P(2,).
(1)請(qǐng)判斷的形狀并說明理由.
(2)動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)O、A重合),過點(diǎn)E分別作EF⊥軸于F,EB⊥軸于B.設(shè)運(yùn)動(dòng)t秒時(shí),矩形EBOF與△OPA重疊部分的面積為S.
求:① S與t之間的函數(shù)關(guān)系式.
② 當(dāng)t為何值時(shí),S最大,并求S的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為了落實(shí)黨中央提出的“惠民政策”,我市今年計(jì)劃開發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不超過200萬元,又不低于198萬元.開發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價(jià)為5.2萬元,一套B型“廉租房”的造價(jià)為4.8萬元.
(1)請(qǐng)問有幾種開發(fā)建設(shè)方案?
(2)哪種建設(shè)方案投入資金最少?最少資金是多少萬元?
(3)在(2)的方案下,為了讓更多的人享受到“惠民”政策,開發(fā)建設(shè)辦公室決定通過縮小“廉租房”的面積來降低造價(jià)、節(jié)省資金.每套A戶型“廉租房”的造價(jià)降低0.7萬元,每套B戶型“廉租房”的造價(jià)降低0.3萬元,將節(jié)省下來的資金全部用于再次開發(fā)建設(shè)縮小面積后的“廉租房”,如果同時(shí)建設(shè)A、B兩種戶型,請(qǐng)你直接寫出再次開發(fā)建設(shè)的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)y=x-4x+3的圖象交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)), 交y軸于點(diǎn)C.
(1)求直線BC的解析式;
(2)點(diǎn)D是在直線BC下方的拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)△BCD的面積最大時(shí),求D點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,12),B(16,0),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位的速度向點(diǎn)O移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B開始在BA上以每秒2個(gè)單位的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒。
⑴求直線AB的解析式;
⑵求t為何值時(shí),△APQ與△AOB相似?
⑶當(dāng)t為何值時(shí),△APQ的面積為個(gè)平方單位?
⑷當(dāng)t為何值時(shí),△APQ的面積最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
一家圖文廣告公司制作的宣傳畫板頗受商家歡迎,這種畫板的厚度忽略不計(jì),形狀均為正方形,邊長(zhǎng)在10~30dm之間.每張畫板的成本價(jià)(單位:元)與它的面積(單位:dm2)成正比例,每張畫板的出售價(jià)(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與畫板的大小無關(guān),是固定不變的.浮動(dòng)價(jià)與畫板的邊長(zhǎng)成正比例.在營(yíng)銷過程中得到了表格中的數(shù)據(jù).
畫板的邊長(zhǎng)(dm) | 10 | 20 |
出售價(jià)(元/張) | 160 | 220 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知反比例函數(shù)與一次函數(shù)的圖象在第一象限相交于點(diǎn)A(1,),
(1)試確定這兩個(gè)函數(shù)的表達(dá)式;
(2)求出這兩個(gè)函數(shù)圖像的另一個(gè)交點(diǎn)B的坐標(biāo),并根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com