二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:
①a+b+c>0;②a-b+c>0;③abc=0;④2a-b=0,
其中正確的有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
C
分析:觀察函數(shù)圖象得到x=1時,y<0;x=-1時,y>0,所以a+b+c<0,a-b+c>0,則可對①②進行判斷;由于拋物線過原點,所以c=0,可對③進行判斷;根據(jù)拋物線的對稱軸為直線x=-1,即x=-=-1,則可對④進行判斷.
解答:∵x=1時,y<0,
∴a+b+c<0;所以①錯誤;
∵x=-1時,y>0,
∴a-b+c>0;所以②正確;
∵拋物線過原點,
∴c=0,
∴abc=0,所以③正確;
∵拋物線的對稱軸為直線x=-1,
∴x=-=-1,
∴2a-b=0,所以③正確.
故選C.
點評:本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開口向上;對稱軸為直線x=-;拋物線與y軸的交點坐標(biāo)為(0,c);當(dāng)b2-4ac>0,拋物線與x軸有兩個交點;當(dāng)b2-4ac=0,拋物線與x軸有一個交點;當(dāng)b2-4ac<0,拋物線與x軸沒有交點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網(wǎng)點C(0,
3
)
,當(dāng)x=-4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實數(shù)a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當(dāng)運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時,y>0.其中正確結(jié)論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案