【題目】如圖,點(diǎn)A,B為反比例函數(shù)y=在第一象限上的兩點(diǎn),AC⊥y軸于點(diǎn)C,BD⊥x軸于點(diǎn)D,若B點(diǎn)的橫坐標(biāo)是A點(diǎn)橫坐標(biāo)的一半,且圖中陰影部分的面積為k﹣2,則k的值為( )
A. B. C. D.
【答案】B
【解析】
根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,設(shè)B(t,),則AC=2CE=2t,可表示出A(2t,),由點(diǎn)B和點(diǎn)A的縱坐標(biāo)可知BD=2OC,然后根據(jù)三角形面積公式得到關(guān)于k的方程,解此方程即可.
解:設(shè)B(t,),
∵AC⊥y軸于點(diǎn)C,BD⊥x軸于點(diǎn)D,B點(diǎn)的橫坐標(biāo)是A點(diǎn)橫坐標(biāo)的一半,
∴AC=2CE=2t,
∴A(2t,),
∴BD=2OC=2BE,
在△OCM和△BEM中
∴△OCM≌△BEM,
∴CM=EM=,
同理可證:△ODN≌△AEN,
∴EN=DN=,
∴陰影部分的面積=.
解得:k=
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)某中學(xué)學(xué)生為了解該校學(xué)生喜歡球類(lèi)活動(dòng)的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查(要求每位學(xué)生只能填寫(xiě)一種自己喜歡的球類(lèi)),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
(1)參加調(diào)查的學(xué)生共有 人,在扇形圖中,表示“其他球類(lèi)”的扇形的圓心角為 度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有2000名學(xué)生,則估計(jì)喜歡“籃球”的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)教育部門(mén)為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動(dòng)質(zhì)疑、獨(dú)立思考、專(zhuān)注聽(tīng)講、講解題目”四個(gè)項(xiàng)目進(jìn)行評(píng)價(jià).檢測(cè)小組隨機(jī)抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)本次抽查的樣本容量是 ;
(2)在扇形統(tǒng)計(jì)圖中,“主動(dòng)質(zhì)疑”對(duì)應(yīng)的圓心角為 度;
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能“獨(dú)立思考”的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(2,0).
(1)寫(xiě)出拋物線的對(duì)稱(chēng)軸與x軸的交點(diǎn)坐標(biāo);
(2)點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大;
(3)點(diǎn)B(﹣1,2)在該拋物線上,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),求直線AC的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE是⊙O的直徑,點(diǎn)A和點(diǎn)D是⊙O上的兩點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BE延長(zhǎng)線于點(diǎn)C
(I)若∠ADE=25°,求∠C的度數(shù)
(II)若AB=AC,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AD=2AB,E是AD的中點(diǎn),一塊三角板的直角頂點(diǎn)與點(diǎn)E重合,兩直角邊與AB、BC分別交于點(diǎn)M、N,求證:BM=CN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿(mǎn)足市場(chǎng)需求,某超市購(gòu)進(jìn)一種水果,每箱進(jìn)價(jià)是40元.超市規(guī)定每箱售價(jià)不得少于45元,根據(jù)以往經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每箱45元時(shí),每天可以賣(mài)出700箱.每箱售價(jià)每提高1元,每天要少賣(mài)出20箱.
(1)求出每天的銷(xiāo)量y(箱)與每箱售價(jià)x(元)之間的函數(shù)關(guān)系式,并直接寫(xiě)出x的范圍;
(2)當(dāng)每箱售價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)w(元)最大?最大利潤(rùn)是多少?
(3)為穩(wěn)定物價(jià),有關(guān)部分規(guī)定:每箱售價(jià)不得高于70元.如果超市想要每天獲得的利潤(rùn)不低于5120元,請(qǐng)直接寫(xiě)出售價(jià)x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是正方形ABCD的對(duì)角線,BC=2,邊BC在其所在的直線上平移,將通過(guò)平移得到的線段記為PQ,連接PA、QD,并過(guò)點(diǎn)Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請(qǐng)直接寫(xiě)出線段BC在平移過(guò)程中,四邊形APQD是什么四邊形?
(2)請(qǐng)判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;
(3)在平移變換過(guò)程中,設(shè)y=S△OPB,BP=x(0≤x≤2),求y與x之間的函數(shù)關(guān)系式,并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(,),點(diǎn)Q的坐標(biāo)為(,),且,,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱(chēng)該矩形為點(diǎn)P,Q的“相關(guān)矩形”.下圖為點(diǎn)P,Q 的“相關(guān)矩形”的示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0).
①若點(diǎn)B的坐標(biāo)為(3,1)求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為,點(diǎn)M的坐標(biāo)為(m,3).若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com