已知:直角梯形OABC的四個頂點是O(0,0),A(
3
2
,1),精英家教網(wǎng)B(s,t),C(
7
2
,0),拋物線y=x2+mx-m的頂點P是直角梯形OABC內(nèi)部或邊上的一個動點,m為常數(shù).
(1)求s與t的值,并在直角坐標(biāo)系中畫出直角梯形OABC;
(2)當(dāng)拋物線y=x2+mx-m與直角梯形OABC的邊AB相交時,求m的取值范圍.
分析:(1)AB∥x軸,BC∥y軸∴B點的橫坐標(biāo)與C的橫坐標(biāo)相同,縱坐標(biāo)與A點的縱坐標(biāo)相同.就可以求出s,t的值.
(2)拋物線y=x2+mx-m與直角梯形OABC的邊AB相交,拋物線的開口向上,拋物線與AB相交,因而拋物線的頂點一定在AB上或在AB的下邊,即頂點的縱坐標(biāo)小于B點的縱坐標(biāo)1.用m表示出頂點的縱坐標(biāo),小于或等于1,就可以得到關(guān)于m的不等式,從而解出m的范圍.
解答:精英家教網(wǎng)解:
(1)如圖,在坐標(biāo)系中標(biāo)出O,A,C三點,連接OA,OC,
∵∠AOC≠90°,
∴∠ABC=90°,
故BC⊥OC,BC⊥AB,
∴B(
7
2
,1).((1分))
即s=
7
2
,t=1.直角梯形如圖所畫.(2分)
(大致說清理由即可)

(2)由題意,y=x2+mx-m與y=1(線段AB)相交,
得,
y=x2+mx-m
y=1
(3分)
∴1=x2+mx-m,
由(x-1)(x+1+m)=0,
得x1=1,x2=-m-1.
∵x1=1<
3
2
,不合題意,舍去.(4分)
∴拋物線y=x2+mx-m與AB邊只能相交于(x2,1),
3
2
≤-m-1≤
7
2
,
-
9
2
≤m≤-
5
2
.①(5分)
又∵頂點P(-
m
2
,-
m2+4m
4
)是直角梯形OABC的內(nèi)部和其邊上的一個動點,
0≤-
m
2
7
2
,即-7≤m≤0. ②(6分)
-
m2+4m
4
=-
(m+2)2-4
4
=-(
m
2
+1)2+1≤1
,
(或者拋物線y=x2+mx-m頂點的縱坐標(biāo)最大值是1)
∴點P一定在線段AB的下方.(7分)
又∵點P在x軸的上方,
-
m2+4m
4
≥0
,m(m+4)≤0,
m≤0
m+4≥0
或者
m≥0
m+4≤0
.(8分)
∴-4≤m≤0. (9分) ③(9分)
又∵點P在直線y=
2
3
x的下方,
-
m2+4m
4
2
3
×(-
m
2
)
,(10分)
即m(3m+8)≥0.
m≤0
3m+8≤0
或者
m≥0
3m+8≥0
,(*(8分)處評分后,此處不重復(fù)評分)
∴m≤-
8
3
(11分),或m≥0 ④
由①,②,③,④,得-4≤m≤-
8
3
.(12分)
說明:解答過程,全部不等式漏寫等號的扣(1分),個別漏寫的酌情處理.
點評:結(jié)合函數(shù)的圖象理解函數(shù)的解析式的特點,利用數(shù)形結(jié)合的方法可以比較容易理解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O(shè)為坐標(biāo)原點,OA所在直精英家教網(wǎng)線為x軸,建立如圖所示的平面直角坐標(biāo)系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若上述拋物線的對稱軸與OB交于點D,點P為線段DB上一動點,過P作y軸的平行線,交拋物線于點M,問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設(shè)P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設(shè)P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,ABOC,BCx軸于點C,A(1,1)、B(3,1).動點PO點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設(shè)P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S

(1)求經(jīng)過O、A、B三點的拋物線解析式;

(2)求St的函數(shù)關(guān)系式;

(3)在運(yùn)動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.

(4)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點OQ在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省無錫市積余實驗學(xué)校中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設(shè)P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案