【題目】如圖,A,B,C三點在⊙O上,直徑BD平分∠ABC,過點DDE∥AB交弦BC于點E,過點D⊙O的切線交BC的延長線于點F.

(1)求證:EF=ED;

(2)如果半徑為5,cos∠ABC=,求DF的長.

【答案】(1)證明見解析(2)5

【解析】

⑴根據(jù)圓的性質(zhì)與定義,利用角的關(guān)系即可求解;⑵根據(jù)圓的定義與性質(zhì),利用三角形的性質(zhì),通過勾股定理即可求解.

(1)∵BD平分∠ABC,

∴∠1=∠2,

∵DE∥AB,

∴∠2=∠3,

∴∠1=∠3,

BC是O的切線,

∴∠BDF=90°,

∴∠1+∠F=90°,∠3+∠EDF=90°,

∴∠F=∠EDF,

∴EF=DE;

(2)連接CD,AD,

BD是O的直徑,

∴∠BCD=90°,

∵DE∥AB,

∴∠DEF=∠ABC,

∵cos∠ABC=

在RtECD中,cos∠DEC=,

設(shè)CE=3x,則DE=5x,

由(1)可知,BE=EF=5x,

∴BF=10x,CF=2x,

在RtCFD中,由勾股定理得:DF=2x,

半徑為5m,

∴BD=10,

∵BF×DC=FD×BD,

∴10x4x=102x,

解得:x=,

∴DF=2x=5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc(a≠0)的圖象如圖所示,下列說法錯誤的是(  )

A. 圖象關(guān)于直線x=1對稱 B. 函數(shù)yax2bxc(a≠0)的最小值是-

C. -13是方程ax2bxc=0(a≠0)的兩個根 D. 當(dāng)x<1時,yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為拓展學(xué)生視野,促進書本知識與生活實踐的深度融合,荊州市某中學(xué)組織八年級全體學(xué)生前往松滋洈水研學(xué)基地開展研學(xué)活動.在此次活動中,若每位老師帶隊14名學(xué)生,則還剩10名學(xué)生沒老師帶;若每位老師帶隊15名學(xué)生,就有一位老師少帶6名學(xué)生,現(xiàn)有甲、乙兩種大型客車,它們的載客量和租金如表所示:

甲型客車

乙型客車

載客量(人/輛)

35

30

租金(元/輛)

400

320

學(xué)校計劃此次研學(xué)活動的租金總費用不超過3000元,為安全起見,每輛客車上至少要有2名老師.

1)參加此次研學(xué)活動的老師和學(xué)生各有多少人?

2)既要保證所有師生都有車坐,又要保證每輛車上至少要有2名老師,可知租車總輛數(shù)為   輛;

3)學(xué)校共有幾種租車方案?最少租車費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C均在坐標(biāo)軸上,AO=BO=CO=1,過A,O,C作⊙DE是⊙D上任意一點,連結(jié)CE, BE,則的最大值是(

A. 4 B. 5 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】銅陵市義安區(qū)實施了城鄉(xiāng)居民基本醫(yī)療保險(簡稱醫(yī)療保險),辦法規(guī)定農(nóng)村村民只要每人每年交納180元錢就可以加入醫(yī)療保險,住院時自己先墊付,出院同時就可得到按一定比例的報銷款,這項舉措惠及民生,吳斌與同學(xué)隨機調(diào)查了他們鎮(zhèn)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計圖.

根據(jù)圖中信息,解答下列問題:

(1)本次調(diào)查了多少村民?被調(diào)查的村民中參加醫(yī)療保險,得到報銷款的有多少人?

(2)若該鎮(zhèn)有34000村民,請估算有多少人參加了醫(yī)療保險?要使兩年后參加醫(yī)療保險的人數(shù)增加到業(yè)務(wù)31460人,假設(shè)這兩年的年增長率相同,求年增長率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,ADBC邊上的高,EAC的中點,PAD上的一個動點,當(dāng)PCPE的和最小時,∠CPE的度數(shù)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,在中,,∠ABC=30°,,點、E分別是邊、AC上動點,點不與點重合,DEBC

1)如圖1,當(dāng)AE=1時,求長;

2)如圖2,把沿著直線翻折得到,設(shè)

①當(dāng)點F落在斜邊上時,求的值;

如圖3,當(dāng)點F落在外部時,EF、DF分別與相交于點HG,如果△ABC和△DEF重疊部分的面積為,求的函數(shù)關(guān)系式及定義域.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分線交于O點,過點OBC的平行線交ABM點,交ACN點,則△AMN的周長為( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

同步練習(xí)冊答案