解:(1)由ax
2-8ax+12a=0(a<0)
得x
1=2,x
2=6.
A、B兩點(diǎn)坐標(biāo)分別為:(2,0),(6,0).
(2)由(1)知OA=2,OB=6.
又∵△OCA∽△OBC,
∴OC
2=OA•OB=2×6.
∴OC=2
(-2
舍去).
∴線(xiàn)段OC的長(zhǎng)為2
.
∴
設(shè)AC=k,則BC=
k
由AC
2+BC
2=AB
2得
k
2+(
k)
2=(6-2)
2解得k=2(-2舍去)
∵OA=AC=2,
∴AC=2,BC=2
=OC
過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,
∴OD=
OB=3
∴CD=
∴C的坐標(biāo)為(3,
)
將C點(diǎn)的坐標(biāo)代入拋物線(xiàn)的解析式得
=a(3-2)(3-6)
∴a=-
∴拋物線(xiàn)的函數(shù)關(guān)系式為:
y=-
x
2+
x-4
.
(3)①當(dāng)P
1與O重合時(shí),△BCP
1為等腰三角形
∴P
1的坐標(biāo)為(0,0);
②當(dāng)P
2B=BC時(shí)(P
2在B點(diǎn)的左側(cè)),△BCP
2為等腰三角形
∴P
2的坐標(biāo)為(6-2
,0);
③當(dāng)P
3為AB的中點(diǎn)時(shí),P
3B=P
3C,△BCP
3為等腰三角形
∴P
3的坐標(biāo)為(4,0);
④當(dāng)BP
4=BC時(shí)(P
4在B點(diǎn)的右側(cè)),△BCP
4為等腰三角形
∴P
4的坐標(biāo)為(6+2
,0);
∴在x軸上存在點(diǎn)P,使△BCP為等腰三角形,符合條件的點(diǎn)P的坐標(biāo)為:
(0,0),(6-2
,0),(4,0),(6+2
,0).
分析:(1)令拋物線(xiàn)中y=0,可得出A、B的坐標(biāo).
(2)先根據(jù)△OCA∽△OBC,得出OC的長(zhǎng)度,設(shè)AC=k,則BC=
k,在RT△ABC中,可求出k的值,繼而就可得出OA=AC,過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,然后利用解直角三角形的知識(shí),可求出點(diǎn)C的坐標(biāo),代入可得出二次函數(shù)解析式.
(3)應(yīng)該有四個(gè)符合條件的點(diǎn):
①以C為圓心,BC為半徑作弧,交x軸于一點(diǎn),這點(diǎn)符合P點(diǎn)要求,此時(shí)CP=BC,已知了B、C的坐標(biāo),即可求出P點(diǎn)坐標(biāo).
②以B為圓心,BC為半徑作弧,交x軸于兩點(diǎn),這兩點(diǎn)也符合P點(diǎn)要求,此時(shí)BC=BP,根據(jù)B、C的坐標(biāo),不難得出BC的長(zhǎng),將B點(diǎn)坐標(biāo)向左或向右平移BC個(gè)單位即可得出P點(diǎn)坐標(biāo).
③作BC的垂直平分線(xiàn),與x軸的交點(diǎn)也符合P點(diǎn)要求,此時(shí)CP=BP,可設(shè)出P點(diǎn)坐標(biāo),用坐標(biāo)系兩點(diǎn)間距離公式表示出BP和CP的長(zhǎng),即可求出P點(diǎn)坐標(biāo).
因此共有4個(gè)符合條件的P點(diǎn).
點(diǎn)評(píng):本題考查了二次函數(shù)的知識(shí),其中涉及了數(shù)形結(jié)合問(wèn)題,由拋物線(xiàn)求二次函數(shù)的解析式,用幾何中相似三角形的性質(zhì)求點(diǎn)的坐標(biāo)等知識(shí).注意這些知識(shí)的綜合應(yīng)用.