20.已知:如圖,一次函數(shù)y=kx+3的圖象與反比例函數(shù)y=$\frac{m}{x}$(x>0)的圖象交于點(diǎn)P.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、點(diǎn)D,$\frac{OC}{CA}$=$\frac{1}{2}$,且tan∠PDB=$\frac{2}{3}$.
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x取何值時,一次函數(shù)的值小于反比例函數(shù)的值?

分析 (1)把x=0代入y=kx+3即可求出D的坐標(biāo);
(2)設(shè)P的坐標(biāo)為(a,b),可得出OA=a,由OC與CA的比值,表示出OC,確定出C坐標(biāo),將C坐標(biāo)代入直線解析式得到關(guān)于k與a的關(guān)系式,再由BP=a,BD=3+a,tan∠PDB=$\frac{2}{3}$,利用三角形函數(shù)求出a的值,確定出k的值,進(jìn)而確定出一次函數(shù)解析式,將x=a的值代入求出y的值,確定出P坐標(biāo),代入反比例解析式求出m的值,即可確定出反比例解析式.
(3)根據(jù)圖象即可求得.

解答 解:(1)令x=0,則y=3,
∴D(0,3);
設(shè)P(a,b),則OA=OB=a,
∵$\frac{OC}{CA}$=$\frac{1}{2}$,
∴OC=$\frac{1}{2}$AC,
∴C($\frac{1}{3}$a,0),
∵點(diǎn)C在直線y=kx+3上,
∴0=$\frac{1}{3}$ak+3,即ka=-9,
∵BP=a,BD=3+a,tan∠PDB=$\frac{2}{3}$,
∴$\frac{PB}{BD}$=$\frac{a}{3+a}$=$\frac{2}{3}$,
∴a=6,
∴k=-$\frac{3}{2}$,
∴一次函數(shù)的表達(dá)式為y=-$\frac{3}{2}$x+3;
將x=6代入一次函數(shù)解析式得:y=-6,即P(6,-6),
代入反比例解析式得:m=-36,
∴一次函數(shù)的表達(dá)式為y=-$\frac{3}{2}$x+3,反比例函數(shù)的表達(dá)式為y=-$\frac{36}{x}$.、
(3)∵P(6,-6),
∴由圖象可知:0<x<6時,一次函數(shù)的值小于反比例函數(shù)的值.

點(diǎn)評 此題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,涉及的知識有:坐標(biāo)與圖形性質(zhì),待定系數(shù)法確定函數(shù)解析式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.用代入法解方程組$\left\{\begin{array}{l}{x-2y=5①}\\{5x+y=3②}\end{array}\right.$,以下各式正確的是(  )
A.x-2(3-5x)=2B.x-5=2(3-5x)C.5x+(x-5)=3D.5x(x-5)=6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.通過配方法,求拋物線y=1-2x-x2的對稱軸、頂點(diǎn)坐標(biāo)和最值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖:點(diǎn)C為線段AB的中點(diǎn),D在線段CB上,AB=8cm,BD=6cm,求CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,矩形ABCD中,點(diǎn)P是線段AD上的一動點(diǎn),P從點(diǎn)A出發(fā)想點(diǎn)D運(yùn)動(不與點(diǎn)D重合),O為BD的中點(diǎn),PO的延長線交BC于Q,若AD=8,AB=6,
(1)求證:四邊形PBQD是平行四邊形;
(2)當(dāng)AP等于多少時,四邊形PBQD是菱形;
(3)在第(2)問的前提下,求線段PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.一個正方體的表面涂滿了同種顏色,按如圖所示將它切成27個大小相等的小立方塊.設(shè)其中僅有i個面(1,2,3)涂有顏色的小立方塊的個數(shù)為xi,則x1、x2、x3之間的數(shù)量關(guān)系為x1-x2+x3=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,∠AOB=120°,射線OC從OA開始,繞點(diǎn)O逆時針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘20°;射線OD從OB開始,繞點(diǎn)O逆時針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘5°,OC和OD同時旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時間為t(0≤t≤15).
(1)當(dāng)t為何值時,射線OC與OD重合;
(2)當(dāng)t為何值時,射線OC⊥OD;
(3)試探索:在射線OC與OD旋轉(zhuǎn)的過程中,是否存在某個時刻,使得射線OC,OB與OD中的某一條射線是另兩條射線所夾角的角平分線?若存在,請求出所有滿足題意的t的取值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知2x2a-1y與3xyb-2是同類項(xiàng),求-(-a2+2ab+b2)+2(-a2+ab+b2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.若點(diǎn)A(3,2)和點(diǎn)B(a,b)關(guān)于x軸對稱,則ab的值為( 。
A.9B.$\frac{1}{9}$C.8D.$\frac{1}{8}$

查看答案和解析>>

同步練習(xí)冊答案